
© Copyright 1995 National Instruments Corporation.
All Rights Reserved.

NI-488.2™

User Manual for Macintosh

January 1995 Edition

Part Number 320897A-01

National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices:
Australia (03) 879 9422, Austria (0662) 435986, Belgium 02/757.00.20,
Canada (Ontario) (519) 622-9310, Canada (Québec) (514) 694-8521,
Denmark 45 76 26 00, Finland (90) 527 2321, France (1) 48 14 24 24,
Germany 089/741 31 30, Italy 02/48301892, Japan (03) 3788-1921,
Mexico 95 800 010 0793, Netherlands 03480-33466, Norway 32-84 84 00,
Singapore 2265886, Spain (91) 640 0085, Sweden 08-730 49 70,
Switzerland 056/20 51 51, Taiwan 02 377 1200, U.K. 0635 523545

Limited Warranty

The media on which you receive National Instruments software are warranted not to fail
to execute programming instructions, due to defects in materials and workmanship, for a
period of 90 days from date of shipment, as evidenced by receipts or other
documentation. National Instruments will, at its option, repair or replace software media
that do not execute programming instructions if National Instruments receives notice of
such defects during the warranty period. National Instruments does not warrant that the
operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and
clearly marked on the outside of the package before any equipment will be accepted for
warranty work. National Instruments will pay the shipping costs of returning to the
owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The
document has been carefully reviewed for technical accuracy. In the event that technical
or typographical errors exist, National Instruments reserves the right to make changes to
subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall
National Instruments be liable for any damages arising out of or related to this document
or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE
ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT
THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE
LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF
PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF
THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will
apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause
of action accrues. National Instruments shall not be liable for any delay in performance
due to causes beyond its reasonable control. The warranty provided herein does not
cover damages, defects, malfunctions, or service failures caused by owner's failure to
follow the National Instruments installation, operation, or maintenance instructions;
owner's modification of the product; owner's abuse, misuse, or negligent acts; and power
failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any
form, electronic or mechanical, including photocopying, recording, storing in an
information retrieval system, or translating, in whole or in part, without the prior written
consent of National Instruments Corporation.

Trademarks

NI-488®, NI-488.2™, and TNT4882C™ are trademarks of National Instruments
Corporation.

Product and company names listed are trademarks or trade names of their respective
companies.

WARNING REGARDING MEDICAL AND CLINICAL
USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to
ensure a level of reliability suitable for use in treatment and diagnosis of humans.
Applications of National Instruments products involving medical or clinical treatment
can create a potential for accidental injury caused by product failure, or by errors on the
part of the user or application designer. Any use or application of National Instruments
products for or involving medical or clinical treatment must be performed by properly
trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent
serious injury or death should always continue to be used when National Instruments
products are being used. National Instruments products are NOT intended to be a
substitute for any form of established process, procedure, or equipment used to monitor
or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corp. v NI-488.2 UM for Macintosh

Contents

About This Manual ..xi
How to Use This Manual Set ..xi
Organization of This Manual ..xii
Conventions Used in This Manual..xiii
Related Documentation ..xiii
Customer Communication ..xiv

Chapter 1
Introduction ...1-1

GPIB Overview ..1-1
Talkers, Listeners, and Controllers ..1-1
Controller-In-Charge and System Controller1-1
GPIB Addressing..1-2
Sending Messages Across the GPIB ..1-2

Data Lines ..1-2
Handshake Lines..1-3
Interface Management Lines..1-3

Setting Up and Configuring Your System......................................1-4
Controlling More Than One Board..................................1-5
Configuration Requirements..1-5

The NI-488.2 Software Components ..1-6
NI-488.2 Driver and Driver Utilities ..1-6
C Language Files ..1-7
QuickBASIC Language Files ...1-7
Device Manager Files ...1-8
How the NI-488.2 Software Works with Your System..................1-8

Chapter 2
Developing Your Application ...2-1

Choosing a Programming Method..2-1
Using the NI-488.2 Language Interface ...2-1

Using NI-488 Functions: One Device for Each Board....2-1
NI-488 Device Functions2-2
NI-488 Board Functions2-2

Using NI-488.2 Routines: Multiple Boards and/or
Multiple Devices ..2-2

Using the Device Manager ...2-3
Checking Status with Global Variables ..2-3

Status Word – ibsta ..2-3
Error Variable – iberr ...2-5
Count Variables – ibcnt and ibcntl ...2-5

Using IBIC 488.2 to Communicate with Devices ..2-5
Writing Your NI-488 Application ..2-6

Items to Include ..2-6

Contents

NI-488.2 UM for Macintosh vi © National Instruments Corp.

NI-488 Program Shell ..2-7
General Program Steps and Examples ...2-8

Step 1. Open a Device...2-8
Step 2. Clear the Device..2-8
Step 3. Configure the Device ..2-8
Step 4. Trigger the Device ..2-9
Step 5. Wait for the Measurement2-9
Step 6. Read the Measurement ..2-10
Step 7. Process the Data..2-10
Step 8. Place the Device Offline2-10

Writing Your NI-488.2 Application ...2-11
Items to Include ..2-11
NI-488.2 Program Shell..2-12
General Program Steps and Examples ...2-13

Step 1. Initialization ..2-13
Step 2. Find All Listeners ...2-13
Step 3. Identify the Instrument ..2-13
Step 4. Initialize the Instrument2-14
Step 5. Configure the Instrument2-15
Step 6. Trigger the Instrument ..2-15
Step 7. Wait for the Measurement2-15
Step 8. Read the Measurement ..2-16
Step 9. Process the Data..2-16
Step 10. Place the Board Offline.....................................2-16

Compiling, Linking, and Running ..2-17
C Applications..2-17
QuickBASIC Applications ...2-17

Chapter 3
Debugging Your Application ..3-1

Running NI-488.2 Test ...3-1
Debugging with the Global Status Variables ..3-1
Debugging with IBIC 488.2..3-1
GPIB Error Codes ...3-1
Configuration Errors ...3-2
Timing Errors ..3-3
Communication Errors ..3-3

Repeat Addressing..3-3
Termination Method...3-4

Common Questions ..3-4

Contents

© National Instruments Corp. vii NI-488.2 UM for Macintosh

Chapter 4
Interface Bus Interactive Control Utility ..4-1

Overview...4-1
Example Using NI-488 Functions ..4-1
IBIC 488.2 Syntax ..4-4

Number Syntax...4-4
String Syntax ..4-4
Address Syntax...4-5

IBIC 488.2 Syntax for NI-488 Functions ...4-5
IBIC 488.2 Syntax for NI-488.2 Routines..4-8
Status Word ..4-9
Error Information..4-9
Count ...4-9
Common NI-488 Functions ..4-10

ibfind ..4-10
ibdev ...4-10
ibwrt..4-12
ibrd..4-12

Common NI-488.2 Routines in IBIC 488.2..4-12
Set ...4-12
Send and SendList ..4-13
Receive ...4-13

Auxiliary Functions ..4-14
Set (Select Device or Board) ..4-14
Help (Display Help Information) ...4-15
! (Repeat Previous Function)..4-15
- (Turn Display Off) and + (Turn Display On)4-15
n* (Repeat Function n Times) ..4-16
$ (Execute Indirect File) ...4-16
Print (Display the ASCII String) ..4-16
Buffer (Set Buffer Display Mode)..4-17

Chapter 5
GPIB Programming Techniques ..5-1

Termination of Data Transfers ..5-1
High-Speed Data Transfers (HS488)..5-2

Enabling HS488..5-2
System Configuration Effects on HS4885-3

Waiting for GPIB Conditions ...5-3
Device-Level Calls and Bus Management..5-3
Talker/Listener Applications ..5-4

Waiting for Messages from the Controller5-4
Requesting Service ...5-4

Serial Polling ..5-5
Service Requests from IEEE 488 Devices5-5
Service Requests from IEEE 488.2 Devices5-5
Automatic Serial Polling ..5-5

Contents

NI-488.2 UM for Macintosh viii © National Instruments Corp.

Stuck SRQ State ...5-6
Autopolling and Interrupts ...5-6
C “ON SRQ” Capability ..5-6

SRQ and Serial Polling with NI-488 Device Functions.................5-7
SRQ and Serial Polling with NI-488.2 Routines............................5-7

Example 1: Using FindRQS..5-8
Example 2: Using AllSpoll ...5-9

Parallel Polling..5-9
Implementing a Parallel Poll ..5-9

Parallel Polling with NI-488 Functions5-10
Parallel Polling with NI-488.2 Routines..........................5-11

Chapter 6
GPIB Configuration Utility ..6-1

Overview...6-1
Running the Configuration Utility ..6-1

Opening the Configuration Utility..6-1
Default Configuration ..6-3
Control Items..6-4
Help Frame ...6-5
Global Frame..6-6
Bus/Device Frame ..6-7

Options for Buses or Devices ..6-8
Primary Address ..6-8
Secondary Address ..6-8
Timeout ..6-8
EOS Modes..6-9
EOS Byte ...6-9

Options for Buses Only..6-9
Bus Timing ..6-9
TNT High Speed..6-10
DMA..6-10
System Controller ..6-10
Assert REN when System (Controller)..............6-10
Unaddressing ...6-10
Repeat Addressing ...6-11

Options for Devices Only ..6-11
Rename Device..6-11
Use Bus..6-11

Exiting the Configuration Utility ..6-11

Contents

© National Instruments Corp. ix NI-488.2 UM for Macintosh

Appendix A
Status Word Conditions ...A-1

Appendix B
Error Codes and Solutions ..B-1

Appendix C
Device Manager Interface..C-1

Appendix D
Customer Communication ..D-1

Glossary ...G-1

Index ...I-1

Figures

Figure 1-1. GPIB Address Bits ...1-2
Figure 1-2. Linear and Star System Configuration...1-4
Figure 1-3. Example of Multiboard System Setup ...1-5
Figure 1-4. How the NI-488.2 Software Works with Your System1-8

Figure 2-1. General Program Shell Using NI-488 Device Functions...................2-7
Figure 2-2. General Program Shell Using NI-488.2 Routines..............................2-12

Figure 6-1. Opening Screen of NI-488 Config ...6-2
Figure 6-2. Device Default Settings in NI-488 Config...6-3
Figure 6-3. Help Frame in NI-488 Config..6-5
Figure 6-4. Manual Bus Association in NI-488 Config..6-6

Tables

Table 1-1. GPIB Handshake Lines..1-3
Table 1-2. GPIB Interface Management Lines..1-3

Table 2-1. Status Word (ibsta) Layout ..2-4

Table 3-1. GPIB Error Codes ..3-2

Table 4-1. Syntax for Device-Level NI-488 Functions in IBIC 488.2................4-6
Table 4-2. Syntax for Board-Level NI-488 Functions in IBIC 488.24-7
Table 4-3. Syntax for NI-488.2 Routines in IBIC 488.24-8
Table 4-4. Auxiliary Functions in IBIC 488.2 ..4-14

Table 6-1. Bus/Device Options in NI-488 Config ..6-7

© National Instruments Corp. xi NI-488.2 UM for Macintosh

About This Manual

This manual describes the features and functions of the NI-488.2 software for Macintosh.
This manual assumes that you are already familiar with the Macintosh operating system.

How to Use This Manual Set

NI-488.2 User
Manual for
Macintosh

Application
Development
and Examples

Getting Started
Manual

Novice
Users

Installation and
Configuration

NI-488.2 Function
Reference Manual

for Macintosh

Experienced
Users

Function
and Routine
Descriptions

Use the getting started manual that came with your kit to install and configure your GPIB
hardware and NI-488.2 software.

Use the NI-488.2 User Manual for Macintosh to learn the basics of GPIB and how to
develop an application program. The user manual also contains debugging information
and detailed examples.

Use the NI-488.2 Function Reference Manual for Macintosh for specific NI-488 function
and NI-488.2 routine information , such as format, parameters, and possible errors.

About This Manual

NI-488.2 UM for Macintosh xii © National Instruments Corp.

Organization of This Manual

This manual is organized as follows:

• Chapter 1, Introduction , gives an overview of GPIB and the NI-488.2 software.

• Chapter 2, Developing Your Application, explains how to develop a GPIB
application program using NI-488 functions and NI-488.2 routines.

• Chapter 3, Debugging Your Application, describes several ways to debug your
application program.

• Chapter 4, Interface Bus Interactive Control Utility, introduces you to IBIC
488.2 , the interactive control utility you can use to communicate with GPIB
devices interactively.

• Chapter 5, GPIB Programming Techniques, describes techniques for using some
NI-488 functions and NI-488.2 routines in your application program.

• Chapter 6, GPIB Configuration Utility , contains instructions for configuring the
NI-488.2 software with the NI-488 Config utility.

• Appendix A, Status Word Conditions , gives a detailed description of the conditions
reported in the status word, ibsta .

• Appendix B, Error Codes and Solutions, lists a description of each error, some
conditions under which it might occur, and possible solutions.

• Appendix C, Device Manager Interface, contains information for programming your
GPIB interface from any language using the Device Manager functions.

• Appendix D, Customer Communication, contains forms you can use to request help
from National Instruments or to comment on our products and manuals.

• The Glossary contains an alphabetical list and description of terms used in this
manual, including abbreviations, acronyms, metric prefixes, mnemonics, and
symbols.

• The Index contains an alphabetical list of key terms and topics in this manual,
including the page where you can find each one.

About This Manual

© National Instruments Corp. xiii NI-488.2 UM for Macintosh

Conventions Used in This Manual

The following conventions are used in this manual.

bold Bold text denotes commands, menus, menu items, options,
and screen button names and checkboxes.

italic Italic text denotes emphasis, cross references, field names, or
an introduction to a key concept.

bold italic Bold italic text denotes a note, caution, or warning.

monospace Text in this font denotes text or characters that you enter from
the keyboard. Sections of code, programming examples, and
syntax examples also appear in this font. This font is also
used for the proper name of disk drives, paths, directories,
device names, variables, and for statements taken from
program code.

bold monospace Bold text in this font denotes the messages and responses that
the computer automatically prints to the screen.

italic monospace Italic text in this font denotes that you must supply the
appropriate words or values in the place of these items.

<> Angle brackets enclose the name of a key on the keyboard—
for example, <Shift>.

IEEE 488 and IEEE 488 and IEEE 488.2 refer to the ANSI/IEEE Standard
IEEE 488.2 488.1-1987 and the ANSI/IEEE Standard 488.2-1987,

respectively, which define the GPIB.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms are listed in
the Glossary.

Related Documentation

The following documents contain information that you may find helpful as you read this
manual:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for
Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1987, IEEE Standard Codes, Formats, Protocols, and
Common Commands

• Inside Macintosh, Apple Computer, Inc., Reading, MA, 1987

About This Manual

NI-488.2 UM for Macintosh xiv © National Instruments Corp.

• Macintosh Programmer's Workshop, Version 3.3 , Apple Computer, Inc., Cupertino,
CA, 1993

• Metrowerks CodeWarrior User’s Guide, Metrowerks, Inc., Mooers, NY

• Microsoft QuickBASIC, Microsoft Corp., Redmond, WA, 1988

• THINK C User's Manual, Symantec Corp., Bedford, MA

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We
are interested in the applications you develop with our products, and we want to help if
you have problems with them. To make it easy for you to contact us, this manual
contains comment and configuration forms for you to complete. These forms are in
Appendix D, Customer Communication, at the end of this manual.

© National Instruments Corp. 1-1 NI-488.2 UM for Macintosh

Chapter 1
Introduction

This chapter gives an overview of GPIB and the NI-488.2 software.

GPIB Overview

The ANSI/IEEE Standard 488.1-1987, also known as GPIB (General Purpose Interface
Bus), describes a standard interface for communication between instruments and
controllers from various vendors. It contains information about electrical, mechanical,
and functional specifications. The GPIB is a digital, 8-bit parallel communications
interface with data transfer rates of 1 Mbytes/s and above. The bus supports one System
Controller, usually a computer, and up to 14 additional instruments. The ANSI/IEEE
Standard 488.2-1987 extends IEEE 488.1 by defining a bus communication protocol, a
common set of data codes and formats, and a generic set of common device commands.

Talkers, Listeners, and Controllers

GPIB devices can be Talkers, Listeners, or Controllers. A Talker sends out data
messages. Listeners receive data messages. The Controller, usually a computer,
manages the flow of information on the bus. It defines the communication links and
sends GPIB commands to devices.

Some devices are capable of playing more than one role. A digital voltmeter, for
example, can be a Talker and a Listener. If your personal computer has a National
Instruments GPIB interface board and the NI-488.2 software installed, it can function as a
Talker, Listener, and Controller.

Controller-In-Charge and System Controller

You can have multiple Controllers on the GPIB, but only one Controller at a time can be
the active Controller, or Controller-In-Charge (CIC). When a Controller is not active, it
is considered an idle Controller. Active control can pass from the current CIC to an idle
Controller. The System Controller, usually a GPIB interface board, is the only device on
the bus that can make itself the CIC.

Introduction Chapter 1

NI-488.2 UM for Macintosh 1-2 © National Instruments Corp.

GPIB Addressing

All devices and boards connected to the GPIB must be assigned a unique GPIB address.
The Controller uses the addresses to identify each device when sending or receiving data.
A GPIB address is made up of two parts: a primary address and an optional secondary
address.

The primary address is a number in the range 0 to 30. The GPIB Controller uses the
primary address to form a talk or listen address that is sent over the GPIB when
communicating with a device.

A talk address is formed by setting bit 6, the TA (Talk Active) bit of the GPIB address.
A listen address is formed by setting bit 5, the LA (Listen Active) bit of the GPIB
address. For example, if a device is at address 1, the Controller sends hex 41 (address 1
with bit 6 set) to make the device a Talker. Because the Controller is usually at primary
address 0, it sends hex 20 (address 0 with bit 5 set) to make itself a Listener. Figure 1-1
shows the configuration of the GPIB address bits.

Bit
Position 7 6 5 4 3 2 1 0

Meaning 0 TA LA GPIB Primary Address (range 0 to 30)

Figure 1-1. GPIB Address Bits

With some devices, you can use secondary addressing. A secondary address is a number
in the range hex 60 to hex 7E. When secondary addressing is in use, the Controller sends
the primary talk or listen address of the device followed by the secondary address of the
device.

Sending Messages Across the GPIB

Devices on the bus communicate by sending messages. Signals and lines transfer these
messages across the GPIB interface, which consists of 16 signal lines and eight ground
return (shield drain) lines. The 16 signal lines are discussed in the following sections.

Data Lines

Eight data lines, DIO1 through DIO8, carry both data and command messages.

Chapter 1 Introduction

© National Instruments Corp. 1-3 NI-488.2 UM for Macintosh

Handshake Lines

Three hardware handshake lines asynchronously control the transfer of message bytes
between devices. This process is a three-wire interlocked handshake, and it guarantees
that devices send and receive message bytes on the data lines without transmission error.
Table 1-1 summarizes the GPIB handshake lines.

Table 1-1. GPIB Handshake Lines

Line Description

NRFD (not ready for data) Listening device is ready/not ready to receive a message
byte. Also used by the Talker to signal high-speed
transfers (HS488).

NDAC (not data accepted) Listening device has/has not accepted a message byte.

DAV (data valid) Talking device indicates signals on data lines are stable
(valid) data.

Interface Management Lines

Five GPIB hardware lines manage the flow of information across the bus. Table 1-2
summarizes the GPIB interface management lines.

Table 1-2. GPIB Interface Management Lines

Line Description

ATN (attention) Controller drives ATN true when it sends commands and
false when it sends data messages.

IFC (interface clear) System Controller drives the IFC line to initialize the bus
and make itself CIC.

REN (remote enable) System Controller drives the REN line to place devices
in remote or local program mode.

SRQ (service request) Any device can drive the SRQ line to asynchronously
request service from the Controller.

EOI (end or identify) Talker uses the EOI line to mark the end of a data
message. Controller uses the EOI line when it conducts
a parallel poll.

Introduction Chapter 1

NI-488.2 UM for Macintosh 1-4 © National Instruments Corp.

Setting Up and Configuring Your System

Devices are usually connected with a cable assembly consisting of a shielded
24-conductor cable with both a plug and receptacle connector at each end. With this
design, you can link devices in a linear configuration, a star configuration, or a
combination of the two. Figure 1-2 shows the linear and star configurations.

Device B

Device C

Device A
Linear

Configuration

Device D

Device CDevice B

Device A

Star
Configuration

Figure 1-2. Linear and Star System Configuration

Chapter 1 Introduction

© National Instruments Corp. 1-5 NI-488.2 UM for Macintosh

Controlling More Than One Board

Multiboard drivers, such as the NI-488.2 driver for Macintosh, can control more than one
interface board. Figure 1-3 shows an example of a multiboard system configuration.
gpib0 is the access board for the voltmeter, and gpib1 is the access board for the
plotter and printer. The control functions of the devices automatically access their
respective boards.

Printer

Plotter

Digital Voltmeter

gpib0

gpib1

One
GPIB

Another
GPIB

Figure 1-3. Example of Multiboard System Setup

Configuration Requirements

To achieve the high data transfer rate that the GPIB was designed for, you must limit the
physical distance between devices and the number of devices on the bus. The following
restrictions are typical:

• A maximum separation of four meters between any two devices and an average
separation of two meters over the entire bus.

• A maximum total cable length of 20 m.

• A maximum of 15 devices connected to each bus, with at least two-thirds powered
on.

Introduction Chapter 1

NI-488.2 UM for Macintosh 1-6 © National Instruments Corp.

For high-speed operation, the following restrictions apply:

• All devices in the system must be powered on.

• Cable lengths should be as short as possible up to a maximum of 15 m of cable in
each system.

• At least one equivalent device load per meter of cable.

If you want to exceed these limitations, you can use bus extenders to increase the cable
length or expanders to increase the number of device loads. Extenders and expanders are
available from National Instruments.

The following sections describe the NI-488.2 software, which controls the flow of
communication on the GPIB.

NI-488.2 Software Components

The following section highlights important elements of the NI-488.2 software for
Macintosh and describes the function of each element.

NI-488.2 Driver and Driver Utilities

The NI-488.2 software includes the following driver and utility files:

• Read Me is a documentation file that contains important information about the
NI-488.2 software and a description of any new features. Before you use the
software, read this file for the most recent information.

• NI-488.2 Installer is an application that installs the NI-488.2 software.

• NI-488 INIT loads the appropriate drivers for installed National Instruments
GPIB interfaces. The NI-488 INIT is loaded into memory when the Macintosh is
booted.

• NI-488 Config is a configuration utility that you can use to examine or change
the software settings.

• NB-Boards is a configuration utility that displays information about the boards
currently installed in your computer if it contains plug-in slots.

• NI-488.2 Test is a software diagnostic utility.

• IBIC 488.2 is an interactive control program that you use to communicate with
the GPIB devices interactively using NI-488.2 functions and routines. It helps you to
learn the NI-488.2 routines and to program your instrument or other GPIB devices.

Chapter 1 Introduction

© National Instruments Corp. 1-7 NI-488.2 UM for Macintosh

• NI-DMA/DSP is a system extension that provides DMA functionality through an
RTSI connection to an NB-DMA2800 or NB-DMA-8.

• The Ethernet folder contains utilities that are applicable if you have a National
Instruments GPIB-ENET.

C Language Files

The C LI Folder contains files relevant to programming in THINK C, MPW C, and
Metrowerks CodeWarrior C.

• decl.h is a file containing useful variable and constant declarations.

• LI.c is a file containing THINK C , MPW C, and Metrowerks CodeWarrior C
language interface code.

• DrInterface.h is a file containing declarations of structures used and should be
included in your program.

• dcsamp.make is the C make file for MPW.

• dcsamp.c is a sample program using device calls.

• bcsamp.c is a sample program using board calls.

QuickBASIC Language Files

The BASIC LI Folder contains a library, initialization code, and examples.

• QuickBASIC4882.lib is a library file loaded by your QuickBASIC program.

• QB488Init.bas is a file which must be merged at the beginning of your program.

• QB488Voc.bas is an example of each call in the QuickBASIC NI-488 vocabulary.

• QB4882Voc.bas is an example of each call in the QuickBASIC NI-488.2
vocabulary.

• Dbsamp.bas is a sample program using device calls.

• Bbsamp.bas is a sample program using board calls.

• QBSAMP4882.bas is a sample program using NI-488.2 calls.

Introduction Chapter 1

NI-488.2 UM for Macintosh 1-8 © National Instruments Corp.

Device Manager Files

The Device Manager calls folder includes the following two files.

• controlcalls.c is a sample program making high-level Device Manager calls.

• pbcontrolcalls.c is a sample program making low-level Device Manager
calls.

How the NI-488.2 Software Works with Your System

The NI-488.2 driver is a device driver that is loaded at system startup.

Figure 1-4 shows how the NI-488.2 software works with your system and your GPIB
hardware.

Operating System

NI-488.2 Driver

GPIB Hardware Interface

OR
User

Application
Program

IBIC 488.2
utility for using

NI-488.2 commands
interactively

NI-488.2 Language Interface

Figure 1-4. How the NI-488.2 Software Works with Your System

© National Instruments Corp. 2-1 NI-488.2 UM for Macintosh

Chapter 2
Developing Your Application

This chapter explains how to develop a GPIB application program using NI-488
functions and NI-488.2 routines.

Choosing a Programming Method

Programs that need to communicate across the GPIB can access the NI-488.2 driver using
either the NI-488.2 language interface or the Device Manager interface.

Using the NI-488.2 Language Interface

Your NI-488.2 software includes two distinct sets of subroutines to meet your application
needs. For most application programs, the NI-488 functions are sufficient. You should
use the NI-488.2 routines if you have a complex configuration with one or more interface
boards and multiple devices.

The following sections discuss some differences between NI-488 functions and NI-488.2
routines.

Using NI-488 Functions: One Device for Each Board

If your system has only one device attached to each board, the NI-488 functions are
probably sufficient for your programming needs. Some other factors that make the
NI-488 functions more convenient include the following:

• With NI-488 asynchronous I/O functions (ibcmda , ibrda , and ibwrta), you can
initiate an I/O sequence while maintaining control over the CPU for non-GPIB tasks.

• NI-488 functions include built-in file transfer functions (ibrdf and ibwrtf).

• With NI-488 functions, you can control the bus in non-typical ways or communicate
with non-compliant devices.

The NI-488 functions consist of high-level (or device) functions that hide much of the
GPIB management operations and low-level (or board) functions that offer you more
control over the GPIB than NI-488.2 routines. The following sections describe these
different function types.

Developing Your Application Chapter 2

NI-488.2 UM for Macintosh 2-2 © National Instruments Corp.

 NI-488 Device Functions

Device functions are high-level functions that automatically execute commands that
handle bus management operations such as reading from and writing to devices or polling
them for status. If you use device functions, you do not need to understand GPIB
protocol or bus management. For information about device-level calls and how they
manage the GPIB, refer to Device-Level Calls and Bus Management in Chapter 5, GPIB
Programming Techniques.

 NI-488 Board Functions

Board functions are low-level functions that perform rudimentary GPIB operations.
Board functions access the interface board directly and require you to handle the
addressing and bus management protocol. In cases when the high-level device functions
might not meet your needs, low-level board functions give you the flexibility and control
to handle situations such as the following:

• Communicating with non-compliant (non-IEEE 488.2) devices

• Altering various low-level board configurations

• Managing the bus in non-typical ways

The NI-488 board functions are compatible with, and can be interspersed within,
sequences of NI-488.2 routines. When you use board functions within a sequence of
NI-488.2 routines, you do not need a prior call to ibfind to obtain a board descriptor.
You simply substitute the board index as the first parameter of the board function call.
With this flexibility, you can handle non-standard or unusual situations that you cannot
resolve using NI-488.2 routines only.

Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices

When your system includes a board that must access more than one device, use the
NI-488.2 routines. NI-488.2 routines can perform the following tasks with a single call:

• Find all of the Listeners on the bus

• Find a device requesting service

• Determine the state of the SRQ line, or wait for SRQ to be asserted

• Address multiple devices to listen

Chapter 2 Developing Your Application

© National Instruments Corp. 2-3 NI-488.2 UM for Macintosh

Using the Device Manager

You might want to use the Device Manager interface if your application requires true
asynchronous calls or completion routines. Refer to Appendix C, Device Manager
Interface, for more information. Using the NI-488.2 language interfaces is the
recommended programming method.

Checking Status with Global Variables

Each NI-488 function and NI-488.2 routine updates the global variables to reflect the
status of the device or board that you are using. The status word (ibsta), the error
variable (iberr), and the count variables (ibcnt and ibcntl) contain useful
information about the performance of your application program. Your program should
check these variables frequently. The following sections describe each of these global
variables and how you can use them in your application program. You can print out the
values of the global variables at any time while the application is running.

Status Word – ibsta

All functions update a global status word, ibsta , which contains information about the
state of the GPIB and the GPIB hardware. Most of the NI-488 functions return the value
stored in ibsta . You can test for conditions reported in ibsta to make decisions
about continued processing, or you can debug your program by checking ibsta after
each call.

ibsta is a 16-bit value. A bit value of one (1) indicates that a certain condition is in
effect. A bit value of zero (0) indicates that the condition is not in effect. Each bit in
ibsta can be set for NI-488 device calls (dev), NI-488 board calls and NI-488.2 calls
(brd), or both (dev, brd).

Table 3-1 shows the condition that each bit position represents, the bit mnemonics, and
the type of calls for which each bit can be set. For a detailed explanation of each of the
status conditions, refer to Appendix A, Status Word Conditions .

Developing Your Application Chapter 2

NI-488.2 UM for Macintosh 2-4 © National Instruments Corp.

Table 2-1. Status Word (ibsta) Layout

Mnemonic
Bit
Pos.

Hex
Value Type Description

ERR 15 8000 dev, brd GPIB error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting service

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State

The language header files included on your distribution disk contain the mnemonic
constants for ibsta . You can check a bit position in ibsta by using its numeric value
or its mnemonic constant. For example, bit position 15 (hex 8000) detects a GPIB error.
The mnemonic for this bit is ERR. To check for a GPIB error, use either of the following
statements after each NI-488 function and NI-488.2 routine as shown:

if (ibsta & ERR) gpiberr();

or

if (ibsta & 0x8000) gpiberr();

where gpiberr() is an error handling routine.

Chapter 2 Developing Your Application

© National Instruments Corp. 2-5 NI-488.2 UM for Macintosh

Error Variable – iberr

If the ERR bit is set in the status word (ibsta), a GPIB error has occurred. When an
error occurs, the error type is specified by the value in iberr .

Note: The value in iberr is meaningful as an error type only when the ERR bit is
set, indicating that an error has occurred.

For more information on error codes and solutions refer to Chapter 3, Debugging Your
Application , or Appendix B, Error Codes and Solutions.

Count Variables – ibcnt and ibcntl

The count variables are updated after each read, write, or command function. ibcnt
and ibcntl are both 32-bit integers. If you are reading data, the count variables
indicate the number of bytes read. If you are sending data or commands, the count
variables reflect the number of bytes sent.

In your application program, you can use the count variables to null-terminate an ASCII
string of data received from an instrument. For example, if data is received in an array of
characters, you can use ibcnt to null-terminate the array and print the measurement on
the screen as follows:

char rdbuf[512];
ibrd (ud, rdbuf, 20L);
if (!(ibsta & ERR)){

rdbuf[ibcnt] = '\0';
printf ("Read: %s\n", rdbuf);

}
else {

error();
}

ibcnt is the number of bytes received. Data begins in the array at index zero (0);
therefore, ibcnt is the position for the null character that marks the end of the string.

Using IBIC 488.2 to Communicate with Devices

Before you begin writing your application program, you might want to use the Interface
Bus Interactive Control utility, IBIC 488.2 . With IBIC 488.2 , you communicate
with your instruments from the keyboard rather than from an application program.
Before you develop your GPIB application, you can use IBIC 488.2 to learn how to
communicate with your instruments and to determine your programming needs. For
specific device communication instructions, refer to the user manual that came with your
instrument. For information about using IBIC 488.2 and for detailed examples, refer
to Chapter 4, Interface Bus Interactive Control Utility.

Developing Your Application Chapter 2

NI-488.2 UM for Macintosh 2-6 © National Instruments Corp.

Writing Your NI-488 Application

This section discusses items you should include in your application program, general
program steps, and an NI-488 example. In this manual, the example code is presented
in C using the standard C language interface. The NI-488.2 software includes the source
code for example NI-488 applications written in C (dcsamp.c and bcsamp.c) and in
QuickBASIC (Dbsamp.BAS and Bbsamp.BAS).

Items to Include

• For C applications, include the GPIB header files decl.h and DrInterface.h .
These file contain variable and constant declarations as well as declarations of
structures.

• For QuickBASIC applications, the file QB488Init.bas must be merged at the
beginning of your program and the library file QuickBASIC4882.lib must be
present in your System Folder .

• Check for errors after each NI-488 function call.

• Declare and define a function to handle GPIB errors. This function takes the device
offline and closes the application. If the function is declared as follows:

void gpiberr (char *msg); /* function prototype */

then your application invokes the function as follows:

if (ibsta & ERR) {
gpiberr("GPIB error");

}

Chapter 2 Developing Your Application

© National Instruments Corp. 2-7 NI-488.2 UM for Macintosh

NI-488 Program Shell

Figure 2-1 is a flowchart of the steps to create your application program using
device-level NI-488 functions.

No

Yes

No

No

Closed All
Devices?

Yes

START

Make a Device-Level Call
• Send Data to Device
• Receive Data from Device
• Clear Device
• Serial Poll Device
 and so on

(ibwrt)
(ibrd)

(ibclr)
(ibrsp)

Finished GPIB
Programming?

Close Device (ibonl)

END

Yes

Are All
Devices
Open?

Open Device (ibdev)

Figure 2-1. General Program Shell Using NI-488 Device Functions

Developing Your Application Chapter 2

NI-488.2 UM for Macintosh 2-8 © National Instruments Corp.

General Program Steps and Examples

The following steps demonstrate how to use the NI-488 device functions in your
program. This example configures a digital multimeter, reads 10 voltage measurements,
and computes the average of these measurements.

Step 1. Open a Device

Your first NI-488 function call should be to ibdev to open a device.

ud = ibdev(0, 1, 0 , T10s, 1, 0);

if (ibsta & ERR) {
 gpiberr("ibdev error");
}

The input arguments of the ibdev function are as follows:

0 - board index for GPIB0

1 - primary GPIB address of the device

0 - no secondary GPIB address for the device

T10s - I/O timeout value (10 s)

1 - send END message with the last byte when writing to device

0 - disable EOS detection mode

When you call ibdev , the driver automatically initializes the GPIB by sending an
Interface Clear (IFC) message and placing the device in remote programming state.

Step 2. Clear the Device

Clear the device before you configure the device for your application. Clearing the
device resets its internal functions to a default state.

ibclr(ud);
if (ibsta & ERR) {

gpiberr("ibclr error");
}

Step 3. Configure the Device

After you open and clear the device, it is ready to receive commands. To configure the
instrument, you send device-specific commands using the ibwrt function. Refer to the
instrument user manual for the command bytes that work with your instrument.

Chapter 2 Developing Your Application

© National Instruments Corp. 2-9 NI-488.2 UM for Macintosh

ibwrt(ud, "*RST; VAC; AUTO; TRIGGER 2; *SRE 16", 35L);
if (ibsta & ERR) {

gpiberr("ibwrt error");
}

The programming instruction in this example resets the multimeter (*RST). The meter is
instructed to measure the volts alternating current (VAC) using auto-ranging (AUTO), to
wait for a trigger from the GPIB interface board before starting a measurement
(TRIGGER 2), and to assert the SRQ line when the measurement completes and the
multimeter is ready to send the result (*SRE 16).

Step 4. Trigger the Device

If you configure the device to wait for a trigger, you must send a trigger command to the
device before reading the measurement value. Then instruct the device to send the next
triggered reading to its GPIB output buffer.

ibtrg(ud);
if (ibsta & ERR) {

gpiberr("ibtrg error");
}

ibwrt(ud,"VAL1?", 5L);
if (ibsta & ERR) {

gpiberr("ibwrt error");
}

Step 5. Wait for the Measurement

After you trigger the device, the RQS bit is set when the device is ready to send the
measurement. You can detect RQS by using the ibwait function. The second
parameter indicates what you are waiting for. Notice that the ibwait function also
returns when the I/O timeout value is exceeded.

printf("Waiting for RQS...\n");
ibwait (ud, TIMO | RQS);
if (ibsta & (ERR | TIMO)) {

gpiberr("ibwait error");
}

When SRQ has been detected, serial poll the instrument to determine if the measured data
is valid or if a fault condition exists. For IEEE 488.2 instruments, you can find out by
checking the message available (MAV) bit, bit 4 in the status byte that you receive from
the instrument.

Developing Your Application Chapter 2

NI-488.2 UM for Macintosh 2-10 © National Instruments Corp.

ibrsp (ud, &StatusByte);
if (ibsta & ERR) {

gpiberr("ibrsp error");
}

if (!(StatusByte & MAVbit)) {
gpiberr("Improper Status Byte");
printf(" Status Byte = 0x%x\n", StatusByte);

}

Step 6. Read the Measurement

If the data is valid, read the measurement from the instrument. (AsciiToFloat is a
function that takes a null-terminated string as input and outputs the floating point number
it represents.)

ibrd (ud, rdbuf, 10L);
if (ibsta & ERR) {

gpiberr("ibrd error");
}

rdbuf[ibcntl] = '\0';
printf("Read: %s\n", rdbuf);

 /* Output ==> Read: +10.98E-3 */

sum += AsciiToFloat(rdbuf);

Step 7. Process the Data

Repeat steps 4 through 6 in a loop until 10 measurements have been read. Then print the
average of the readings as shown:

printf("The average of the 10 readings is %f\n", sum/10.0);

Step 8. Place the Device Offline

As a final step, take the device offline using the ibonl function.

ibonl (ud, 0);

Chapter 2 Developing Your Application

© National Instruments Corp. 2-11 NI-488.2 UM for Macintosh

Writing Your NI-488.2 Application

This section discusses items you should include in an application program that uses
NI-488.2 routines, general program steps, and an NI-488.2 example. In this manual the
example code is presented in C using the standard C language interface. The NI-488.2
software includes the source code for an example NI-488.2 application written in
QuickBASIC (QBSAMP4882.bas).

Items to Include

• For C applications, include the GPIB header files decl.h and DrInterface.h .
These file contain variable and constant declarations as well as declarations of
structures.

• For QuickBASIC applications, the file QB488Init.bas must be merged at the
beginning of your program and the library file QuickBASIC4882.lib must be
loaded by your program.

• Check for errors after each NI-488.2 routine.

• Declare and define a function to handle GPIB errors. This function takes the device
offline and closes the application. If the function is declared as follows:

void gpiberr (char *msg); /* function prototype */

then your application invokes the function as follows:

if (ibsta & ERR) {
gpiberr("GPIB error");

}

Developing Your Application Chapter 2

NI-488.2 UM for Macintosh 2-12 © National Instruments Corp.

NI-488.2 Program Shell

Figure 2-2 is a flowchart of the steps to create your application program using NI-488.2
routines.

No

END

Make a High-Level CallMake a Low-Level Call

No

• Send Data to Device (Send)
• Receive Data from Device
 (Receive)
• Clear Device (DevClear)
• Serial Poll Device
 (ReadStatusByte)
 and so on

• Address Devices to Listen (SendSetup)
• Send Data to Addressed Listener
 (SendDataBytes)
• Address Device to Talk (ReceiveSetup)
• Receive Data from Addressed Talker
 (RcvRespMsg)
 and so on

Low-Level High-Level

Yes

Close Board
(ibonl)

Are All Boards
Closed?

Finished GPIB
Programming?

Making
High-Level or

Low-Level Call?

Initialize Specified GPIB
Interface (SendIFC)

START

Yes

Are All Boards
Initialized?

Yes

No

Figure 2-2. General Program Shell Using NI-488.2 Routines

Chapter 2 Developing Your Application

© National Instruments Corp. 2-13 NI-488.2 UM for Macintosh

General Program Steps and Examples

The following steps demonstrate how to use the NI-488.2 routines in your program. This
example configures a digital multimeter, reads 10 voltage measurements, and computes
the average of these measurements.

Step 1. Initialization

Use the SendIFC routine to initialize the bus and the GPIB interface board so that the
GPIB board is Controller-In-Charge (CIC). The only argument of SendIFC is the GPIB
interface board number.

SendIFC(0);
if (ibsta & ERR) {

gpiberr("SendIFC error");
}

Step 2. Find All Listeners

Use the FindLstn routine to create an array of all of the instruments attached to the
GPIB. The first argument is the interface board number, the second argument is the list
of instruments that was created, the third argument is a list of instrument addresses that
the procedure actually found, and the last argument is the maximum number of devices
that the procedure can find (that is, it must stop if it reaches the limit). The end of the list
of addresses must be marked with the NOADDR constant, which is defined in the header
file that you included at the beginning of the program.

for (loop = 0; loop <=30; loop++){
instruments[loop] = loop;

}
instruments[31] = NOADDR;

printf("Finding all Listeners on the bus...\n");

Findlstn(0, instruments, result, 30);
if (ibsta & ERR) {

gpiberr("FindLstn error");
}

Step 3. Identify the Instrument

Send an identification query to each device for identification. For this example, assume
that all of the instruments are IEEE 488.2-compatible and can accept the identification
query, *IDN? . In addition, assume that FindLstn found the GPIB interface board at
primary address 0 (default) and, therefore, you can skip the first entry in the result
array.

Developing Your Application Chapter 2

NI-488.2 UM for Macintosh 2-14 © National Instruments Corp.

for (loop = 1; loop <= num_Listeners; loop++) {
Send(0, result[loop], "*IDN?", 5L, NLend);
if (ibsta & ERR) {

gpiberr("Send error");
}

Receive(0, result[loop], buffer, 10L, STOPend);
 if (ibsta & ERR) {

gpiberr("Receive error");
}

buffer[ibcntl] = '\0';
printf("The instrument at address %d is a %s\n",

 result[loop], buffer);
if (strncmp(buffer, "Fluke, 45", 9) == 0) {

fluke = result[loop];
printf("**** Found the Fluke ****\n");
break;

}
}

if (loop > num_Listeners) {
printf("Did not find the Fluke!\n");
ibonl(0,0);
exit(1);

}

The constant NLend signals that the new line character with EOI is automatically
appended to the data to be sent.

The constant STOPend indicates that the read is stopped when EOI is detected.

Step 4. Initialize the Instrument

After you find the multimeter, use the DevClear routine to clear it. The first argument
is the GPIB board number. The second argument is the GPIB address of the multimeter.
Then send the IEEE 488.2 reset command to the meter.

DevClear(0, fluke);
if (ibsta & ERR) {

gpiberr("DevClear error")
}

Send(0, fluke, "*RST", 4L, NLend);
if (ibsta & ERR) {

gpiberr("Send *RST error");
}
sum = 0.0;
for(m =0; m<10; m++){
/* start of loop for Steps 5 through 8 */

Chapter 2 Developing Your Application

© National Instruments Corp. 2-15 NI-488.2 UM for Macintosh

Step 5. Configure the Instrument

After initialization, the instrument is ready to receive instructions. To configure the
multimeter, use the Send routine to send device-specific commands. The first argument
is the number of the access board. The second argument is the GPIB address of the
multimeter. The third argument is a string of bytes to send to the multimeter.

The bytes in this example instruct the meter to measure volts alternating current (VAC)
using auto-ranging (AUTO), to wait for a trigger from the Controller before starting a
measurement (TRIGGER 2), and to assert SRQ when the measurement has been
completed and the meter is ready to send the result (*SRE 16). The fourth argument
represents the number of bytes to be sent. The last argument, NLend , is a constant
defined in the header file which tells Send to append a linefeed character, with EOI
asserted, to the end of the message sent to the multimeter.

Send (0, fluke, "VAC; AUTO; TRIGGER 2; *SRE 16", 29L, NLend);
if (ibsta & ERR) {

gpiberr("Send setup error");
}

Step 6. Trigger the Instrument

In the previous step, the multimeter was instructed to wait for a trigger before
conducting a measurement. Now send a trigger command to the multimeter. You
could use the Trigger routine to accomplish this, but because the Fluke 45 is
IEEE 488.2-compatible, you can just send it the trigger command, *TRG. The VAL1?
command instructs the meter to send the next triggered reading to its output buffer.

Send(0, fluke, "*TRG; VAL1?", 11L, NLend);
if (ibsta & ERR) {

gpiberr("Send trigger error");
}

Step 7. Wait for the Measurement

After the meter is triggered, it takes a measurement and displays it on its front panel and
then asserts SRQ. You can detect the assertion of SRQ using either the TestSRQ or
WaitSRQ routine. If you have a process that you want to execute while you are waiting
for the measurement, use TestSRQ . For this example, you can use the WaitSRQ
routine. The first argument in WaitSRQ is the GPIB board number. The second
argument is a flag returned by WaitSRQ that indicates whether or not SRQ is asserted.

WaitSRQ(0, &SRQasserted);
if (!SRQasserted) {

gpiberr("WaitSRQ error");
}

After you have detected SRQ, use the ReadStatusByte routine to poll the meter and
determine its status. The first argument is the GPIB board number, the second argument

Developing Your Application Chapter 2

NI-488.2 UM for Macintosh 2-16 © National Instruments Corp.

is the GPIB address of the instrument, and the last argument is a variable that
ReadStatusByte uses to store the status byte of the instrument.

ReadStatusByte(0, fluke, &statusByte);
if (ibsta & ERR) {

gpiberr("ReadStatusByte error");
}

After you have obtained the status byte, you must check to see if the meter has a message
to send. You can do this by checking the message available (MAV) bit, bit 4 in the status
byte.

if (!(statusByte & MAVbit) {
gpiberr("Improper Status Byte");
printf("Status Byte = 0x%x\n", statusByte);

}

Step 8. Read the Measurement

Use the Receive function to read the measurement over the GPIB. The first argument
is the GPIB interface board number, and the second argument is the GPIB address of the
multimeter. The third argument is a string into which the Receive function places the
data bytes from the multimeter. The fourth argument represents the number of bytes to
be received. The last argument indicates that the Receive message terminates upon
receiving a byte accompanied with the END message.

Receive(0, fluke, buffer, 10L, STOPend);
if (ibsta & ERR) {

gpiberr("Receive error");
}

buffer[ibcnt] = '\0';
printf (Reading : %s\n", buffer);
sum += AsciiToFloat(buffer);
} /* end of loop started in Step 5 */

Step 9. Process the Data

Repeat Steps 5 through 8 in a loop until 10 measurements have been read. Then print the
average of the readings as shown:

printf (" The average of the 10 readings is : %f\n", sum/10);

Step 10. Place the Board Offline

Before ending your application program, take the board offline using
the ibonl function.

ibonl(0,0);

Chapter 2 Developing Your Application

© National Instruments Corp. 2-17 NI-488.2 UM for Macintosh

Compiling, Linking, and Running

C Applications

Include the following C statement at the beginning of your application program.

#include "decl.h"

The file decl.h defines external variables and constants that you can use in your
application.

If your application requires prototypes, be sure to include the following statement at the
beginning of your application program.

#define PROTOTYPES

The GPIB status, error, and count information are returned in the variables ibsta ,
iberr , and ibcnt , as described earlier in this chapter.

The file LI.c is the language interface source code. A small amount of code is
conditionally compiled. Depending on whether you are using THINK C , MPW C, or
Metrowerks CodeWarrior C, complete one of the following tasks.

• For THINK C, add the file LI.c to your project and add the THINK C library that
contains string functions to your project.

• For MPW C, compile the file LI.c with the following command to produce the
object module called LI.c.o .

c -d MPW LI.c

Add LI.c.o to the command that links your object module to create the
application.

• For Metrowerks CodeWarrior C, add the file LI.c to your project and add the
Metrowerks C libraries that support toolbox and string functions to your project.

QuickBASIC Applications

You must execute a few lines of initialization before the main body of your application
program.

Place the file QB488Init.bas , which contains initialization statements, at the
beginning of the application program. Refer to the Microsoft QuickBASIC MERGE
command or use the editor to copy and paste. QB488Init .bas contains code that loads
the library, QuickBASIC4882 .lib , and initializes three NI-488 status variables. This

Developing Your Application Chapter 2

NI-488.2 UM for Macintosh 2-18 © National Instruments Corp.

library contains the Microsoft QuickBASIC language interface to the NI-488.2 driver.
Place the library in the System Folder .

The GPIB status, error, and count information are returned in the variables ibsta% ,
iberr% , and ibcnt& , as described earlier in this chapter.

A library routine cannot pass a value back to QuickBASIC through either a temporary or
an uninitialized variable. You cannot use temporary variables to receive data from any
NI-488 function or NI-488.2 routine. Refer to the Microsoft QuickBASIC manual for
examples of temporary variables.

© National Instruments Corp. 3-1 NI-488.2 UM for Macintosh

Chapter 3
Debugging Your Application

This chapter describes several ways to debug your application program.

Running NI-488.2 Test

The software diagnostic test NI-488.2 Test verifies that the NI-488.2 software is
installed and functioning with the GPIB board. For more information about
NI-488.2 Test , refer to the getting started manual that came with your GPIB board.

Debugging with the Global Status Variables

After each function call to your NI-488.2 driver, ibsta , iberr , ibcnt , and ibcntl
are updated before the call returns to your application. You should check for an error
after each GPIB call. Refer to Chapter 2, Developing Your Application, for more
information about how to use these variables within your program to automatically check
for errors.

After you determine which GPIB call is failing and note the corresponding values of the
global variables, refer to Appendix A, Status Word Conditions , and Appendix B, Error
Codes and Solutions. These appendixes will help you interpret the state of the driver.

Debugging with IBIC 488.2

If your application does not automatically check for and display errors, you can locate an
error by using the Interface Bus Interactive Control utility, IBIC 488.2 . Simply issue
the same functions or routines, one at a time as they appear in your application program.
Because IBIC 488.2 returns the status values and error codes after each call, you
should be able to determine which GPIB call is failing. For more information about
IBIC 488.2 , refer to Chapter 4, Interface Bus Interactive Control Utility .

After you determine which GPIB call is failing and note the corresponding values of the
global variables, refer to Appendix A, Status Word Conditions , and Appendix B, Error
Codes and Solutions. These appendixes will help you interpret the state of the driver.

GPIB Error Codes

Table 3-1 lists the GPIB error codes. Remember that the error variable is meaningful
only when the ERR bit in the status variable is set. For a detailed description of each
error and possible solutions, refer to Appendix B, Error Codes and Solutions.

Debugging Your Application Chapter 3

NI-488.2 UM for Macintosh 3-2 © National Instruments Corp.

Table 3-1. GPIB Error Codes

Error
Mnemonic

iberr
Value Meaning

EDVR 0 System error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

EDMA 8 No DMA channel available

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow

ESRQ 16 SRQ stuck in ON position

ETAB 20 Table problem

ELCK 21 Board or device is locked

Configuration Errors

If your hardware and software settings do not match, one of the following problems
might occur:

• Application hangs on input or output functions

• Data is corrupted

If these problems occur, make sure that the GPIB hardware settings match the NI-488.2
software settings for the interrupt request level and the DMA channel. Refer to the
getting started manual that came with your kit for information on hardware and software
default settings. For instructions on how to view or modify the NI-488.2 software
configuration, refer to Chapter 6, GPIB Configuration Utility .

Chapter 3 Debugging Your Application

© National Instruments Corp. 3-3 NI-488.2 UM for Macintosh

Several applications require customized configuration of the GPIB driver. For example,
you might want to terminate reads on a special end-of-string character, or you might
require secondary addressing. In these cases, you can use either the configuration utility
to permanently reconfigure the driver or the NI-488 ibconfig function to
programmatically modify the driver while your application is running.

If your application uses ibconfig , it will always work regardless of the previous
configuration of the driver. Refer to the description of ibconfig in the NI-488.2
Function Reference Manual for Macintosh for more information.

Timing Errors

If your application fails, but the same calls issued in ibic are successful, your program
might be issuing the NI-488.2 calls too quickly for your device to process and respond to
them. This problem can also result in corrupted or incomplete data.

A well behaved IEEE 488 device should hold off handshaking and set the appropriate
transfer rate. If your device is not well behaved, you can test for and resolve the timing
error by single-stepping through your program and inserting finite delays between each
GPIB call. One way to do this is to have your device communicate its status whenever
possible. Although this method is not possible with many devices, it is usually the best
option. Your delays will be controlled by the device and your application can adjust
itself and work independently on any platform. Other delay mechanisms will probably
cause varying delay times on different platforms.

Communication Errors

Repeat Addressing

Some devices require GPIB addressing before any GPIB activity. Devices adhering to
the IEEE 488.2 standard should remain in their current state until specific commands are
sent across the GPIB to change their state. You might need to configure your NI-488.2
driver to perform repeat addressing if your device does not remain in its currently
addressed state. Refer to Chapter 6, GPIB Configuration Utility , or to the description of
ibconfig (option IbcREADDR) in the NI-488.2 Function Reference Manual for
Macintosh for more information about reconfiguring your software.

Debugging Your Application Chapter 3

NI-488.2 UM for Macintosh 3-4 © National Instruments Corp.

Termination Method

You should be aware of the data termination method that your device uses. By default,
your NI-488.2 software is configured to send EOI on writes and terminate reads on EOI
or a specific byte count. If you send a command string to your device and it does not
respond, it might be because it does not recognize the end of the command. You might
need to send a termination message such as <CR> <LF> after a write command as
follows:

ibwrt(dev,”COMMAND\x0A\x0D”,9);

Common Questions

What do I do if NI-488.2 Test fails with an error?

Refer to the getting started manual for specific information about what might cause this
test to fail.

How do I communicate with my instrument over the GPIB?

Refer to the documentation that came from the instrument manufacturer. The command
sequences you use are totally dependent on the specific instrument. The documentation
for each instrument should include the GPIB commands you need to communicate with
it. In most cases, NI-488 device-level calls are sufficient for communicating with
instruments. Refer to Chapter 2, Developing Your Application, for more information.

Can I use the NI-488 and NI-488.2 calls together in the same application?

Yes, you can mix NI-488 functions and NI-488.2 routines.

What do I do if I have installed the NI-488.2 software and now my Macintosh
crashes upon startup?

Try changing the name of the NI-488 INIT to ZNI-488 INIT . Because INITs load
in alphabetical order, the ZNI-488 INIT will load last, preventing possible corruption
from INITs that load after it. If changing the name of the NI-488 INIT does not solve
the problem, another INIT file might have a conflict with the NI-488 INIT . Try
removing some of your other INIT files. You can store them in a temporary folder, in
case you need to reload them later. If you are using System 7.5 or later, you can use the
Extensions Manager control panel to disable certain extensions and control panels.

Chapter 3 Debugging Your Application

© National Instruments Corp. 3-5 NI-488.2 UM for Macintosh

What can I do to check for errors in my GPIB application?

Examine the value of ibsta after each NI-488 or NI-488.2 call. If a call fails, the ERR
bit of ibsta is set and an error code is stored in ibcnt . For more information about
global status variables, refer to Chapter 2, Developing Your Application.

How can I use the files located in the Ethernet folder?

You do not need to use the files in the Ethernet folder unless you have a National
Instruments GPIB-ENET.

How do I use IBIC 488.2?

You can use IBIC 488.2 to practice communication with your instrument,
troubleshoot problems, and develop your application program. For instructions, refer to
Chapter 4, Interface Bus Interactive Control Utility.

How can I determine which type of GPIB board I have installed?

Run the NI-Boards configuration utility for information about the GPIB boards
installed in your computer.

How can I determine which version of the NI-488.2 software I have installed?

Select the NI-488 INIT by clicking on it once, and type <Command-I> to get version
information.

What information should I have before I call National Instruments?

Before you contact National Instruments, note the results of the diagnostic test
NI-488.2 Test and fill out the support forms in Appendix D, Customer
Communication .

© National Instruments Corp. 4-1 NI-488.2 UM for Macintosh

Chapter 4
Interface Bus Interactive Control Utility

This chapter introduces you to IBIC 488.2 , the interactive control utility you can use
to communicate with GPIB devices interactively.

Overview

With the IBIC 488.2 utility, you communicate with GPIB devices through functions
you enter at the keyboard. For specific information about how to communicate with your
particular device, refer to the manual that came with the device. You can use IBIC
488.2 to practice communication with the instrument, troubleshoot problems, and
develop your application program.

One way IBIC 488.2 helps you to learn about your instrument and to troubleshoot
problems is by displaying the following information on your screen whenever you enter a
command:

• The results of the status word (ibsta) in hexadecimal notation

• The mnemonic constant of each bit set in ibsta

• The mnemonic value of the error variable (iberr) if an error exists (the ERR bit is
set in ibsta)

• The count value for each read, write, or command function

• The data received from your instrument

Example Using NI-488 Functions

This section shows how you might use IBIC 488.2 to test a sequence of NI-488
device function calls. You do not need to remember the parameters that each function
takes. If you enter the function name only, IBIC 488.2 prompts you for the necessary
parameters.

1. Run IBIC 488.2 by double-clicking on the IBIC 488.2 icon.

Interface Bus Interactive Control Utility Chapter 4

NI-488.2 UM for Macintosh 4-2 © National Instruments Corp.

Your screen should appear as follows:

2. Use ibdev to open a device, assign it to access board gpib0 , choose a primary
address of 6 with no secondary address, set a timeout of 10 s, enable the END
message, and disable the EOS mode:

:ibdev
enter board index: 0
enter primary address: 6
enter secondary address: 0
enter timeout: 13
enter 'EOI on last byte' flag: 1
enter end-of-string mode/byte: 0

id = 32256

ud0:

You could also input all the same information with the ibdev command as follows:

:ibdev 0 6 0 13 1 0
id = 32256

ud0:

3. Clear the device as follows:

ud0: ibclr
[0100] (cmpl)

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corp. 4-3 NI-488.2 UM for Macintosh

4. Write the function, range, and trigger source instructions to your device. Refer to the
instrument's user manual for the command bytes that work with your instrument.

ud0: ibwrt
enter string: "*RST; VAC; AUTO; TRIGGER 2; *SRE 16"

[0100] (cmpl)
count: 35

or

ud0: ibwrt "*RST; VAC; AUTO; TRIGGER 2; *SRE 16"
[0100] (cmpl)
count: 35

5. Trigger the device as follows:

ud0: ibtrg
[0100] (cmpl)

6. Wait for a timeout or for your device to request service. If the current timeout limit
is too short, use ibtmo to change it. Use the ibwait command as follows:

ud0: ibwait
enter wait mask: TIMO RQS

[0900] (rqs cmpl)

or

ud0: ibwait TIMO RQS
[0900] (rqs cmpl)

7. Read the serial poll status byte. This serial poll status byte varies depending on the
device used.

ud0: ibrsp
[0100] (cmpl)
Poll: 0x40 (decimal : 64)

8. Use the read command to display the data on the screen both in hex values and their
ASCII equivalents.

ud0: ibrd
enter byte count: 18

[0100] (cmpl)
count: 18
4e 44 43 56 20 30 30 30 N D C V 0 0 0
2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0
0a 0a . .

or

Interface Bus Interactive Control Utility Chapter 4

NI-488.2 UM for Macintosh 4-4 © National Instruments Corp.

ud0: ibrd 18
[0100] (cmpl)
count: 18
4e 44 43 56 20 30 30 30 N D C V 0 0 0
2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0
0a 0a . .

9. Place the device offline as follows:

ud0: ibonl
enter value: 0

[0100] (cmpl)

or

ud0: ibonl 0
[0100] (cmpl)

10. Terminate the IBIC 488.2 program by entering q at the prompt or choosing Quit
from the File menu.

IBIC 488.2 Syntax

When you enter commands in IBIC 488.2 , you can either include the parameters, or
the program prompts you for values. Some commands require numbers as input values.
Others might require you to input a string.

Number Syntax

You can enter numbers as hexadecimal, octal, or decimal integer.

Hexadecimal numbers–You must precede hex numbers by zero and x (for example, 0xD).

Octal numbers–You must precede octal numbers by zero only (for example, 015).

Decimal numbers–Enter the number only.

String Syntax

You can enter strings as an ASCII character sequence, octal bytes, hex bytes, or special
symbols.

ASCII character sequence–You must enclose the entire sequence in quotation marks (for
example, "*tst"). To include a quotation mark in a string, precede it with a backslash
(for example, "ab\"cd").

Octal bytes–You must use a backslash character followed by the octal value. For
example, octal 40 is represented by \40 and can be used in a string as "ab\40cd" .

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corp. 4-5 NI-488.2 UM for Macintosh

Hex bytes–You must use a backslash character and an x followed by the hex value. For
example, hex 40 is represented by \x40 and can be used in a string as "ab\x40cd" .

Special Symbols–Some instruments require special termination or end-of-string (EOS)
characters that indicate to the device that a transmission has ended. The two most
common EOS characters are \r and \n . \r represents a carriage return character and
\n represents a linefeed character. You can use these special characters to insert the
carriage return and linefeed characters into a string, as in "F3R5T1\r\n" .

Address Syntax

Many of the NI-488.2 routines have an address or address list parameter. An address is a
16-bit representation of the GPIB address of a device. The primary address is stored in
the low byte and the secondary address, if any, is stored in the high byte. For example, a
device at primary address 6 and secondary address 0x67 has an address of 0x6706. A
NULL address is represented as 0xffff.

IBIC 488.2 Syntax for NI-488 Functions

Table 4-1 and Table 4-2 summarize the syntax of NI-488 functions in IBIC 488.2 .
v represents a number and string represents a string that you input. For more
information about the function parameters, use the IBIC 488.2 help feature or refer to
the NI-488.2 Function Reference Manual for Macintosh .

Interface Bus Interactive Control Utility Chapter 4

NI-488.2 UM for Macintosh 4-6 © National Instruments Corp.

Table 4-1. Syntax for Device-Level NI-488 Functions in IBIC 488.2

Syntax Description
ibbna brdname Change access board of device where brdname is symbolic

name of new board
ibclr Clear specified device
ibconfig mn v Alter configurable parameters where mn is mnemonic for a

configuration parameter or equivalent integer value
ibdev v v v v v v Open an unused device. ibdev parameters are board id , pad ,

sad , tmo , eos , eot
ibeos v Change/disable EOS message
ibeot v Enable/disable END message
iblines Read the state of all GPIB control lines
ibln v v Check for presence of device on the GPIB at pad , sad
ibloc Go to local
ibonl v Place device online or offline
ibpad v Change primary address
ibpct Pass control
ibppc v Parallel poll configure
ibrd v Read data where v is the bytes to read
ibrda v Read data asynchronously where v is the bytes to read
ibrdf flname Read data to file where flname is pathname of file to read
ibrpp Conduct a parallel poll
ibrsp Return serial poll byte
ibsad v Change secondary address
ibstop Abort asynchronous operation
ibtmo v Change/disable time limit
ibtrg Trigger selected device
ibwait mask Wait for selected event where mask is a hex, octal, or decimal

integer or a mask bit mnemonic
ibwrt string Write data
ibwrta string Write data asynchronously
ibwrtf flname Write data from a file where flname is pathname of file to write

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corp. 4-7 NI-488.2 UM for Macintosh

Table 4-2. Syntax for Board-Level NI-488 Functions in IBIC 488.2

Syntax Description
ibcac v Become Active Controller
ibcmd string Send commands
ibcmda string Send commands asynchronously
ibconfig mn v Alter configurable parameters where mn is mnemonic for a

configuration parameter or equivalent integer value
ibdma v Enable/disable DMA
ibeos v Change/disable EOS message
ibeot v Enable/disable END message
ibfind udname Return unit descriptor where udname is the symbolic name of a

board (for example, gpib0)
ibgts v Go from Active Controller to standby
ibist v Set/clear ist
iblines Read the state of all GPIB control lines
ibln v v Check for presence of device on the GPIB at pad , sad
ibloc Go to local
ibonl v Place device online or offline
ibpad v Change primary address
ibppc v Parallel poll configure
ibrd v Read data where v is the bytes to read
ibrda v Read data asynchronously where v is the bytes to read
ibrdf flname Read data to file where flname is pathname of file to read
ibrpp Conduct a parallel poll
ibrsc v Request/release system control
ibrsv v Request service
ibsad v Change secondary address
ibsic Send interface clear
ibsre v Set/clear remote enable line
ibstop Abort asynchronous operation
ibtmo v Change/disable time limit
ibwait mask Wait for selected event where mask is a hex, octal, or decimal

integer or a mask bit mnemonic
ibwrt string Write data
ibwrta string Write data asynchronously
ibwrtf flname Write data from a file where flname is pathname of file to write

Interface Bus Interactive Control Utility Chapter 4

NI-488.2 UM for Macintosh 4-8 © National Instruments Corp.

IBIC 488.2 Syntax for NI-488.2 Routines

Table 4-3 summarizes the syntax of NI-488.2 routines in IBIC 488.2 . v represents a
number and string represents a string. address represents an address, and
addrlist represents a list of addresses separated by commas. For more information
about the routine parameters, use the IBIC 488.2 help feature or refer to the NI-488.2
Function Reference Manual for Macintosh.

Table 4-3. Syntax for NI-488.2 Routines in IBIC 488.2

Routine Syntax Description
AllSpoll addrlist Serial poll multiple devices
DevClear address Clear a device
DevClearList addrlist Clear multiple devices
EnableLocal addrlist Enable local control
EnableRemote addrlist Enable remote control
FindLstn addrlist limit Find all Listeners
FindRQS addrlist Find device asserting SRQ
PassControl address Pass control to a device
PPoll Parallel poll devices
PPollConfig address line sense Configure device for parallel poll
PPollUnconfig address Unconfigure device for parallel poll
RcvRespMsg address string mode Receive response message
ReadStatusByte address Serial poll a device
Receive address string mode Receive data from a device
ReceiveSetup address Receive setup
ResetSys addrlist Reset multiple devices
Send address string mode Send data to a device
SendCmds string Send command bytes
SendDataBytes addrlist string
mode

Send data bytes

SendIFC Send interface clear
SendList addrlist string mode Send data to multiple devices
SendLLO Put devices in local lockout
SendSetup addrlist Send setup
SetRWLS addrlist Put devices in remote with lockout state
TestSys addrlist Cause multiple devices to perform self tests
TestSRQ Test for service request
Trigger address Trigger a device
TriggerList addrlist Trigger multiple devices
WaitSRQ Wait for service request

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corp. 4-9 NI-488.2 UM for Macintosh

Status Word

In IBIC 488.2 , all NI-488 functions (except ibfind and ibdev) and NI-488.2
routines return the status word ibsta in two forms: a hex value in square brackets and a
list of mnemonics in parentheses. In the following example, the status word is on the
second line. It shows that the device function write operation completed successfully:

ud0: ibwrt "f2t3x"
[0100] (cmpl)
count: 5

ud0:

For more information about the status word, refer to Chapter 2, Developing Your
Application .

Error Information

If an NI-488 function or NI-488.2 routine completes with an error, IBIC 488.2
displays the relevant error mnemonic. In the following example, an error condition
EBUS has occurred during a data transfer.

ud0: ibwrt "f2t3x"
[8100] (err cmpl)
error: EBUS
count: 1

ud0:

In this example, the addressing command bytes could not be transmitted to the device.
This indicates that either dev1 is powered off, or the GPIB cable is disconnected.

For a detailed list of the error codes and their meanings, refer to Chapter 3, Debugging
Your Application .

Count

When an I/O function completes, IBIC 488.2 displays the actual number of bytes sent
or received, regardless of the existence of an error condition.

If one of the addresses in an address list of an NI-488.2 routine is invalid, then the error is
EARG and IBIC 488.2 displays the index of the invalid address as the count.

The count has a different meaning depending on which NI-488 function or NI-488.2
routine is called. Refer to the function descriptions in the NI-488.2 Function Reference
Manual for Macintosh for the correct interpretation of the count return.

Interface Bus Interactive Control Utility Chapter 4

NI-488.2 UM for Macintosh 4-10 © National Instruments Corp.

Common NI-488 Functions

ibfind

Use the ibfind function to open a board. The following example opens gpib0 .

:ibfind gpib0
id = 32000

gpib0:

id is the unit descriptor of the board. The prompt gpib0 indicates that the board is
open.

Any name you use with the ibfind function must be a valid symbolic name in the
driver. For more information about valid names, refer to Chapter 6, GPIB Configuration
Utility .

ibdev

The ibdev command initializes a device descriptor with the input information.

With ibdev , you specify the following values:

• Access board for the device

• Primary address

• Secondary address

• Timeout setting

• EOT mode

• EOS mode

The following example shows ibdev opening an available device and assigning it to
access gpib0 (board = 0) with a primary address of 6 (pad = 6), a secondary address
of hex 67 (sad = 0x67), a timeout of 10 s (tmo=13), the END message enabled
(eot =1), and the EOS mode disabled (eos= 0).

:ibdev 0 6 0x67 13 1 0
id = 32256

ud0:

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corp. 4-11 NI-488.2 UM for Macintosh

If you use ibdev without specifying parameters, IBIC 488.2 prompts you for the
input parameters as shown in the following example:

:ibdev
enter board index: 0
enter primary address: 6
enter secondary address: 0x67
enter timeout: 13
enter ‘EOI on last byte’ flag: 1
enter end-of-string mode/byte: 0

id = 32256

ud0:

Three distinct errors can occur with the ibdev call:

• EDVR – No device is available, the board index entered refers to a nonexistent board
(that is, not 0, 1, 2, or 3), or no driver is installed. The following example illustrates
an EDVR error.

:ibdev 4 6 0x67 7 1 0
id = -1
[8000] (err)
error: EDVR (2)

:

• ENEB – The board index entered refers to a known board (such as 0), but the driver
cannot find the board.

• EARG – One of the last five parameters is an invalid value. The ibdev call returns
with a new prompt and the EARG error (invalid function argument). If the ibdev
call returns with an EARG error, you must identify which parameter is incorrect and
use the appropriate command to correct it. In the following example, pad has an
invalid value. You can correct it with an ibpad call as shown:

:ibdev 0 66 0x67 7 1 0
id = 32256
[8100] (err cmpl)
error: EARG

ud0: ibpad 6
previous value: 16

Interface Bus Interactive Control Utility Chapter 4

NI-488.2 UM for Macintosh 4-12 © National Instruments Corp.

ibwrt

The ibwrt command sends data from one GPIB device to another. For example, to
send the six character data string F3R5T1 from the computer to a device, you enter the
following string at the prompt as shown in the following example:

ud0: ibwrt "F3R5T1"
[0100] (cmpl)
count: 6

The returned status word contains the cmpl bit, which indicates a successful I/O
completion. The byte count 6 indicates that all six characters were sent from the
computer and received by the device.

ibrd

The ibrd command causes a GPIB device to receive data from another GPIB device.
The following example acquires data from the device and displays it on the screen in hex
format and in its ASCII equivalent, along with the status word and byte count.

ud0: ibrd 20
[2100] (end cmpl)
count: 18
4e 44 43 56 28 30 30 30 N D C V 9 0 0 0
2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0
0d 0a . .

Common NI-488.2 Routines in IBIC 488.2

Set

You must use the set command before you can use NI-488.2 routines in IBIC 488.2 .
The syntax for this form of the set command is as follows:

set 488.2 n

where n represents a board number (for example, n=0 for gpib0).

The 488.2 prompt indicates that you are in NI-488.2 mode on board n . The following
example shows how to enter into 488.2 mode on board gpib0 .

set 488.2 0

488.2 (0):

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corp. 4-13 NI-488.2 UM for Macintosh

Send and SendList

The Send routine sends data to a single GPIB device. You can use the SendList
command to send data to multiple GPIB devices. For example, suppose you want to send
the five character string *IDN? followed by the new line character with EOI. You want
to send the message from the computer to the devices at primary address 2 and 17. To do
this, enter the SendList command at the 488.2 (0) prompt as shown in the
following example:

488.2 (0): SendList 2, 17 "*IDN?" NLend
[0128] (cmpl cic tacs)
count: 6

The returned status word contains the cmpl bit, which indicates a successful I/O
completion. The byte count 6 indicates that six characters, including the added new line,
were sent from the computer and received by both devices.

Receive

The Receive routine causes the GPIB board to receive data from another GPIB device.
The following example acquires 10 data bytes from the device at primary address 5. It
stops receiving data when 10 characters have been received or when the END message is
received. The acquired data is then displayed in hex format along with its ASCII
equivalent. The IBIC 488.2 program also displays the status word and the count of
transferred bytes.

488.2 (0): Receive 5 10 STOPend
[2124] (end cmpl cic lacs)
count: 5
48 65 6c 6c 6f Hello

Interface Bus Interactive Control Utility Chapter 4

NI-488.2 UM for Macintosh 4-14 © National Instruments Corp.

Auxiliary Functions

Table 4-4 summarizes the auxiliary functions that you can use in IBIC 488.2 .

Table 4-4. Auxiliary Functions in IBIC 488.2

Function Description
set udname Select active device or board where udname is the symbolic

name of the new device or board (for example, dev1 or gpib0).
Call ibfind or ibdev initially to open each board or device.

help [option] Display help information where option is any NI-488 or
NI-488.2 call. If you do not enter an option , a menu of options
appears.

! Repeat previous function.

- Turn display off.

+ Turn display on.

n* function Execute function n times where function represents the
correct IBIC 488.2 function syntax.

n* ! Execute previous function n times.

$ filename Execute indirect file where filename is the pathname of a file
that contains IBIC 488.2 functions to be executed.

print string Display string on screen where string is an ASCII character
sequence, octal bytes, hex bytes, or special symbols.

buffer
[option]

Set the type of display used for buffers.

e Exit.

q Quit.

Set (Select Device or Board)

You can use the set command to select 488.2 mode or to communicate with a different
device. The following example switches communication from using NI-488.2 routines
for gpib0 to using a unit descriptor (ud0) previously acquired by an ibdev call.

488.2 (0): set ud0

ud0:

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corp. 4-15 NI-488.2 UM for Macintosh

Help (Display Help Information)

The help feature displays a menu of topics to choose from. Each topic lists relevant
functions and other information. You can access help for a specific NI-488 function or
NI-488.2 routine by typing help followed by the call name (for example, help
ibwrt). Help describes the function syntax for all NI-488 functions and NI-488.2
routines.

! (Repeat Previous Function)

The ! function repeats the most recent function executed. The following example issues
an ibsic command and then repeats that same command.

gpib0: ibsic
[0130] (cmpl cic atn)

gpib0: !
[0130] (cmpl cic atn)

- (Turn Display Off) and + (Turn Display On)

The - function turns off all screen output except for the prompt. This function is useful
when you want to repeat any I/O function quickly without waiting for screen output to be
displayed.

The + function turns the screen output on.

In the following example 24 consecutive letters of the alphabet are read from a device
using three ibrd calls.

ud0: ibrd 8
[2100] (end cmpl)
count: 8
61 62 63 64 65 66 67 68 a b c d e f g h

ud0: -

ud0: ibrd 8

ud0: +

ud0: ibrd 8
[2100] (end cmpl)
count: 8
71 72 73 74 75 76 77 78 q r s t u v w x

Interface Bus Interactive Control Utility Chapter 4

NI-488.2 UM for Macintosh 4-16 © National Instruments Corp.

n* (Repeat Function n Times)

The n* function repeats the execution of the specified function n times, where n is an
integer. In the following example, the message Hello is sent five times to the device
described by ud0 .

ud0 : 5*ibwrt "Hello"

In the following example, the word Hello is sent five times, 20 times, and then 10 more
times.

ud0: 5*ibwrt "Hello"
ud0: 20* !
ud0: 10* !

Notice that the multiplier (*) does not become part of the function name; that is, ibwrt
"Hello" is repeated 20 times, not 5* ibwrt "Hello" .

$ (Execute Indirect File)

The $ function reads a specified file and executes the IBIC 488.2 functions listed in
that file, in sequence, as if they were entered in that order from the keyboard. The
following example executes the IBIC 488.2 functions listed in the file userfile .

gpib0: $ userfile

The following example repeats the operation three times.

gpib0: 3*$ userfile

The display mode that is in effect before this function was executed can be changed by
functions in the indirect file.

Print (Display the ASCII String)

You can use the print function to echo a string to the screen. The following example
shows how you can use ASCII or hex with the print command.

dev1: print "hello"
hello

dev1: print "and\r\n\x67\x6f\x6f\x64\x62\x79\x65"
and
goodbye

You can also use print to display comments from indirect files. The print string
appears even if the display is suppressed with the - function.

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corp. 4-17 NI-488.2 UM for Macintosh

Buffer (Set Buffer Display Mode)

You can set the type of display used for buffers to control how much of the buffer is
displayed. Type buffer 0 to turn off the display of all buffers, buffer 1 to display
the buffer in ASCII only, buffer 2 to display the buffer in hex/ASCII, or buffer 3
to display a brief hex/ASCII display.

© National Instruments Corp. 5-1 NI-488.2 UM for Macintosh

Chapter 5
GPIB Programming Techniques

This chapter describes techniques for using some NI-488 functions and NI-488.2 routines
in your application program.

For more detailed information about each function or routine, refer to the NI-488.2
Function Reference Manual for Macintosh.

Termination of Data Transfers

GPIB data transfers are terminated either when the GPIB EOI line is asserted with the
last byte of a transfer or when a preconfigured end-of-string (EOS) character is
transmitted. By default, the NI-488.2 driver asserts EOI with the last byte of writes and
the EOS modes are disabled.

You can use the ibeot function to enable or disable the end of transmission (EOT)
mode. If EOT mode is enabled, the NI-488.2 driver asserts the GPIB EOI line when the
last byte of a write is sent out on the GPIB. If it is disabled, the EOI line is not asserted
with the last byte of a write.

You can use the ibeos function to enable, disable, or configure the EOS modes. EOS
mode configuration includes the following information:

• An EOS byte

• EOS comparison method – This indicates whether the EOS byte has seven or eight
significant bits. For a 7-bit EOS byte, the eighth bit of the EOS byte is ignored.

• EOS write method – If this is enabled, the NI-488.2 driver automatically asserts the
GPIB EOI line when the EOS byte is written to the GPIB. For example, if the buffer
passed into an ibwrt call contains five occurrences of the EOS byte, the EOI line is
asserted as each of the five EOS bytes are written to the GPIB. If the ibwrt buffer
does not contain an occurrence of the EOS byte, the EOI line is not asserted (unless
the EOT mode is enabled, in which case the EOI line is asserted with the last byte of
the write).

• EOS read method – If this is enabled, the NI-488.2 driver terminates ibrd , ibrda ,
and ibrdf calls when the EOS byte is detected on the GPIB, when the GPIB EOI
line is asserted, or when the specified count is reached. If the EOS read method is
disabled, ibrd , ibrda , and ibrdf calls terminate only when the GPIB EOI line is
asserted or the specified count has been read.

You can use the ibconfig function to configure the software to inform you whether or
not the GPIB EOI line was asserted when the EOS byte was read. Use the
IbcEndBitIsNormal option to configure the software to report only the END bit in

GPIB Programming Techniques Chapter 5

NI-488.2 UM for Macintosh 5-2 © National Instruments Corp.

ibsta when the GPIB EOI line is asserted. By default, the NI-488.2 driver reports END
in ibsta when either the EOS byte is read in or the EOI line is asserted during a read.

High-Speed Data Transfers (HS488)

National Instruments has designed a high-speed data transfer protocol for IEEE 488
called HS488. This protocol increases performance for GPIB reads and writes up to
8 Mbytes/s, depending on the speed of your computer.

HS488 is a superset of the IEEE 488 standard; thus, you can mix IEEE 488.1,
IEEE 488.2, and HS488 devices in the same system. If HS488 is enabled, the
TNT4882C hardware implements high-speed transfers automatically when
communicating with HS488 instruments. To determine whether your GPIB interface
board has the TNT4882C hardware, use the NB-Boards utility. If you attempt to
enable HS488 on a GPIB board that does not have the TNT4882C chip, the error ECAP
is returned.

Enabling HS488

To enable HS488 for your GPIB board, use the ibconfig function (option
IbcHSCableLength). The value passed to ibconfig should specify the number of
meters of cable in your GPIB configuration. If you specify a cable length that is much
smaller than what you actually use, the transferred data could become corrupted. If you
specify a cable length longer than what you actually use, the data is transferred
successfully, but more slowly than if you specified the correct cable length.

In addition to using ibconfig to configure your GPIB board for HS488, the
Controller-In-Charge must send out GPIB command bytes (interface messages) to
configure other devices for HS488 transfers.

If you are using device-level calls, the NI-488.2 software automatically sends the HS488
configuration message to devices. If you enabled the HS488 protocol in the
configuration utility, the NI-488.2 software sends out the HS488 configuration message
when you use ibdev to bring a device online. If you call ibconfig to change the
GPIB cable length, the NI-488.2 software sends out the HS488 message again the next
time you call a device-level function.

If you are using board-level functions or NI-488.2 routines and you want to configure
devices for high-speed, you must send the HS488 configuration messages using ibcmd
or SendCmds . The HS488 configuration message is made up of two GPIB command
bytes. The first byte, the Configure Enable (CFE) message (hex 1F), places all HS488
devices into their configuration mode. Non-HS488 devices should ignore this message.
The second byte is a GPIB secondary command that indicates the number of meters of
cable in your system. It is called the Configure (CFGn) message. Because HS488 can
operate only with cable lengths of 1 to 15 meters, only CFGn values of 1 through 15 (hex
61 through 6F) are valid. If the cable length was configured correctly in the

Chapter 5 GPIB Programming Techniques

© National Instruments Corp. 5-3 NI-488.2 UM for Macintosh

configuration utility, you can determine how many meters of cable are in your system by
calling ibask (option IbaHSCableLength) in your application program. For CFE
and CFGn messages, refer to Appendix A, Multiline Interface Messages , in the NI-488.2
Function Reference Manual for Macintosh.

System Configuration Effects on HS488

Maximum data transfer rates can be limited by your host computer and GPIB system
setup. For example, even though the theoretical maximum transfer rate with HS488 is
8 Mbytes/s, the maximum transfer rate obtainable on Macintosh computers with a NuBus
is 2 Mbytes/s. The same IEEE 488 cabling constraints for a 350 ns T1 delay apply to
HS488. As you increase the amount of cable in your GPIB configuration, the maximum
data transfer rate using HS488 decreases. For example, two HS488 devices connected by
two meters of cable can transfer data faster than three HS488 devices connected by four
meters of cable.

Waiting for GPIB Conditions

You can use the ibwait function to obtain the current ibsta value or to suspend your
application until a specified condition occurs on the GPIB. If you use ibwait with a
parameter of zero, it immediately updates ibsta and returns. If you want to use
ibwait to wait for one or more events to occur, then pass a wait mask to the function.
The wait mask should always include the TIMO event; otherwise, your application is
suspended indefinitely until one of the wait mask events occurs.

Device-Level Calls and Bus Management

The NI-488 device-level calls are designed to perform all of the GPIB management for
your application program. However, the NI-488.2 driver can handle bus management
only when the GPIB interface board is CIC (Controller-In-Charge). Only the CIC is able
to send command bytes to the devices on the bus to perform device addressing or other
bus management activities. Use one of the following methods to make your GPIB board
the CIC:

• If your GPIB board is configured as the System Controller (default), it automatically
makes itself the CIC by asserting the IFC line the first time you make a device-level
call.

• If your setup includes more than one Controller, or if your GPIB interface board is
not configured as the System Controller, use the CIC Protocol method. To use the
protocol, issue the ibconfig function (option IbcCICPROT) or use the
configuration utility to activate the CIC protocol. If the interface board is not CIC
and you make a device-level call with the CIC Protocol enabled, the following
sequence occurs:

1. The GPIB interface board asserts the SRQ line.

GPIB Programming Techniques Chapter 5

NI-488.2 UM for Macintosh 5-4 © National Instruments Corp.

2. The current CIC serial polls the board.

3. The interface board returns a response byte of hex 42.

4. The current CIC passes control to the GPIB board.

If the current CIC does not pass control, the NI-488.2 driver returns the ECIC error
code to your application. This error can occur if the current CIC does not understand
the CIC Protocol. If this happens, you could send a device-specific command
requesting control for the GPIB board. Then use a board-level ibwait command to
wait for CIC.

Talker/Listener Applications

Although designed for Controller-In-Charge applications, you can also use the NI-488.2
software in most non-Controller situations. These situations are known as
Talker/Listener applications because the interface board is not the GPIB Controller. A
typical Talker/Listener application waits for events from the Controller and responds as
appropriate. The following paragraphs describe some programming techniques for
Talker/Listener applications.

Waiting for Messages from the Controller

A Talker/Listener application typically uses ibwait with a mask of 0 to monitor the
status of the interface board. Then, based on the status bits set in ibsta , the application
takes whatever action is appropriate. For example, the application could monitor the
status bits TACS (Talker Active State) and LACS (Listener Active State) to determine
when to send data to or receive data from the Controller. The application could also
monitor the DCAS (Device Clear Active State) and DTAS (Device Trigger Active State)
bits to determine if the Controller has sent the device clear (DCL or SDC) or trigger
(GET) messages to the interface board. If the application detects a device clear from the
Controller, it might reset the internal state of message buffers. If it detects a trigger
message from the Controller, the application might begin an operation such as taking a
voltage reading if the application is actually acting as a voltmeter.

Requesting Service

Another type of event that might be important in a Talker/Listener application is the
serial poll. A Talker/Listener application can call ibrsv with a serial poll response byte
when it needs to request service from the Controller.

Chapter 5 GPIB Programming Techniques

© National Instruments Corp. 5-5 NI-488.2 UM for Macintosh

Serial Polling

You can use serial polling to obtain specific information from GPIB devices when they
request service. When the GPIB SRQ line is asserted, it signals the Controller that a
service request is pending. The Controller must then determine which device asserted the
SRQ line and respond accordingly. The most common method for SRQ detection and
servicing is the serial poll. This section describes how you can set up your application to
detect and respond to service requests from GPIB devices.

Service Requests from IEEE 488 Devices

IEEE 488 devices request service from the GPIB Controller by asserting the GPIB SRQ
line. When the Controller acknowledges the SRQ, it serial polls each open device on the
bus to determine which device requested service. Any device requesting service returns a
status byte with bit 6 set and then unasserts the SRQ line. Devices not requesting service
return a status byte with bit 6 cleared. Manufacturers of IEEE 488 devices use lower
order bits to communicate the reason for the service request or to summarize the state of
the device.

Service Requests from IEEE 488.2 Devices

The IEEE 488.2 standard refined the bit assignments in the status byte. In addition to
setting bit 6 when requesting service, IEEE 488.2 devices also use two other bits to
specify their status. Bit 4, the Message Available bit (MAV), is set when the device is
ready to send previously queried data. Bit 5, the Event Status bit (ESB), is set if one or
more of the enabled IEEE 488.2 events occurs. These events include power-on, user
request, command error, execution error, device-dependent error, query error, request
control, and operation complete. The device can assert SRQ when ESB or MAV are set,
or when a manufacturer-defined condition occurs.

Automatic Serial Polling

You can enable automatic serial polling if you want your application to conduct a serial
poll automatically any time the SRQ line is asserted. You can use autopolling with
NI-488 device-level calls only. The autopolling procedure occurs as follows:

1. To enable autopolling, use the configuration utility or the configuration function,
ibconfig with option IbcAUTOPOLL . (By default, autopolling is enabled.)

2. When the SRQ line is asserted, the driver automatically serial polls the open devices.

3. Each positive serial poll response (bit 6 or hex 40 is set) is stored in a queue
associated with the device that sent it. The RQS bit of the device status word,
ibsta , is set.

4. The polling continues until SRQ is unasserted or an error condition is detected.

GPIB Programming Techniques Chapter 5

NI-488.2 UM for Macintosh 5-6 © National Instruments Corp.

5. To empty the queue, use the ibrsp function. ibrsp returns the first queued
response. Other responses are read in first-in-first-out (FIFO) fashion. If the RQS
bit of the status word is not set when ibrsp is called, a serial poll is conducted and
returns whatever response is received. You should empty the queue as soon as an
automatic serial poll occurs, because responses might be discarded if the queue is
full.

6. If the RQS bit of the status word is still set after ibrsp is called, the response byte
queue contains at least one more response byte. If this happens, you should continue
to call ibrsp until RQS is cleared.

Stuck SRQ State

If autopolling is enabled and the GPIB interface board detects an SRQ, the driver serial
polls all open devices connected to that board. The serial poll continues until either SRQ
unasserts or all the devices have been polled.

If no device responds positively to the serial poll, or if SRQ remains in effect because of
a faulty instrument or cable, a stuck SRQ state is in effect. If this happens during an
ibwait for RQS, the driver reports the ESRQ error. If the stuck SRQ state happens, no
further polls are attempted until another ibwait for RQS is made. Whenever ibwait
is issued, the stuck SRQ state is terminated and the driver attempts a new set of serial
polls.

Autopolling and Interrupts

If autopolling is enabled, the NI-488.2 software can perform autopolling after any device-
level NI-488 call as long as no GPIB I/O is currently in progress. This means that an
automatic serial poll can occur even when your application is not making any calls to the
NI-488.2 software. Autopolling can also occur when a device-level ibwait for RQS is
in progress. Autopolling is not allowed whenever an application calls a board-level
NI-488 function or any NI-488.2 routine, or the stuck SRQ (ESRQ) condition occurs.

If autopolling is enabled and interrupts are disabled, you can use autopolling in the
following situations only:

• During a device-level ibwait for RQS

• Immediately after a device-level NI-488 function is completed, before control is
returned to the application program.

C “ON SRQ” Capability

C applications can respond asynchronously to SRQ using the NI-488 ibsrq function.
This function lets an application specify an SRQ-handling routine that is called whenever
the NI-488.2 driver detects that the SRQ line is asserted. This SRQ-handling routine is

Chapter 5 GPIB Programming Techniques

© National Instruments Corp. 5-7 NI-488.2 UM for Macintosh

not an interrupt service routine. The driver checks the GPIB SRQ line after any NI-488
function or NI-488.2 routine has completed, and if SRQ is asserted and the application
has called ibsrq , the user-defined SRQ-handling routine is called.

SRQ and Serial Polling with NI-488 Device Functions

You can use the device-level NI-488 function ibrsp to conduct a serial poll. ibrsp
conducts a single serial poll and returns the serial poll response byte to the application
program. If automatic serial polling is enabled, the application program can use ibwait
to suspend program execution until RQS appears in the status word, ibsta . The
program can then call ibrsp to obtain the serial poll response byte.

The following example illustrates the use of the ibwait and ibrsp functions in a
typical SRQ servicing situation when automatic serial polling is enabled.

#include "decl.h"

char GetSerialPollResponse (int DeviceHandle)
{

char SerialPollResponse = 0;

ibwait (DeviceHandle, TIMO | RQS);

if (ibsta & RQS) {
printf ("Device asserted SRQ.\n");
/* Use ibrsp to retrieve the serial poll
 response. */
ibrsp (DeviceHandle, &SerialPollResponse);

}
return SerialPollResponse;

}

SRQ and Serial Polling with NI-488.2 Routines

The NI-488.2 software includes a set of NI-488.2 routines that you can use to conduct
SRQ servicing and serial polling. Routines pertinent to SRQ servicing and serial polling
are AllSpoll , FindRQS , ReadStatusByte , TestSRQ , and WaitSRQ .

AllSpoll can serial poll multiple devices with a single call. It places the status bytes
from each polled instrument into a predefined array. Then you must check the RQS bit
of each status byte to determine whether that device requested service.

ReadStatusByte is similar to AllSpoll , except that it serial polls only a single
device. It is also analogous to the device-level NI-488 ibrsp function.

FindRQS serial polls a list of devices until it finds a device that is requesting service or
until it has polled all of the specified devices. The routine returns the index and status
byte value of the device requesting service.

GPIB Programming Techniques Chapter 5

NI-488.2 UM for Macintosh 5-8 © National Instruments Corp.

TestSRQ determines whether the SRQ line is asserted or unasserted, and returns to the
program immediately.

WaitSRQ is similar to TestSRQ , except that WaitSRQ suspends the application
program until either SRQ is asserted or the timeout period is exceeded.

The following examples use NI-488.2 routines to detect SRQ and then determine which
device requested service. In these examples three devices are present on the GPIB at
addresses 3, 4, and 5, and the GPIB interface is designated as bus index 0. The first
example uses FindRQS to determine which device is requesting service and the second
example uses AllSpoll to serial poll all three devices. Both examples use WaitSRQ
to wait for the GPIB SRQ line to be asserted.

Note : Automatic serial polling is not used in these examples because you cannot use
it with NI-488.2 routines .

Example 1: Using FindRQS

This example illustrates the use of FindRQS to determine which device is requesting
service.

void GetASerialPollResponse (char *DevicePad,
char *DeviceResponse)

{
char SerialPollResponse = 0;
int WaitResult;
Addr4882_t Addrlist[4] = {3,4,5,NOADDR};

WaitSRQ (0, &WaitResult);

if (WaitResult) {
printf ("SRQ is asserted.\n");

/* Use FindRQS to find a device that requested service. */

FindRQS (0, AddrList, &SerialPollResponse);
if (!(ibsta & ERR)) {

printf ("Device at pad %x returned byte %x.\n",
AddrList[ibcnt],(int) SerialPollResponse);

*DevicePad = AddrList[ibcnt];
*DeviceResponse = SerialPollResponse;

}
}

return;
}

Chapter 5 GPIB Programming Techniques

© National Instruments Corp. 5-9 NI-488.2 UM for Macintosh

Example 2: Using AllSpoll

This example illustrates the use of AllSpoll to serial poll three devices.

void GetAllSerialPollResponses (Addr4882_t AddrList[], short
ResponseList[])
{

int WaitResult;

WaitSRQ (0, &WaitResult);

if (WaitResult) {
printf ("SRQ is asserted.\n");

/* Use Allspoll to serial poll all the devices at once. */

AllSpoll (0, AddrList, ResponseList);
if (!(ibsta & ERR)) {

for (i = 0; AddrList[i] != NOADDR; i++) {
printf ("Device at pad %x returned byte %x.\n",

AddrList[i], ResponseList[i]);
}

}
}

return;
}

Parallel Polling

Although parallel polling is not widely used, it is a useful method for obtaining the status
of more than one device at the same time. The advantage of a parallel poll is that it can
easily check up to eight individual devices at once. In comparison, eight separate serial
polls would be required to check eight devices for their serial poll response bytes.

Implementing a Parallel Poll

You can implement parallel polling with either NI-488 functions or NI-488.2 routines. If
you use NI-488.2 routines to execute parallel polls, you do not need extensive knowledge
of the parallel polling messages. However, you should use the NI-488 functions for
parallel polling when the GPIB board is not the Controller and must configure itself for a
parallel poll and set its own individual status bit (ist).

GPIB Programming Techniques Chapter 5

NI-488.2 UM for Macintosh 5-10 © National Instruments Corp.

Parallel Polling with NI-488 Functions

Follow these steps to implement parallel polling using NI-488 functions. Each step
contains example code.

1. Configure the device for parallel polling using the ibppc function, unless the device
can configure itself for parallel polling.

ibppc requires an 8-bit value to designate the data line number, the ist sense, and
whether or not the function configures or unconfigures the device for the parallel
poll. The bit pattern is as follows:

0 1 1 E S D2 D1 D0

E is 1 to disable parallel polling and 0 to enable parallel polling for that particular
device.

S is 1 if the device is to assert the assigned data line when ist = 1, and 0 if the
device is to assert the assigned data line when ist = 0.

D2 through D0 determine the number of the assigned data line. The physical line
number is the binary line number plus one. For example, DIO3 has a binary bit
pattern of 010.

The following example code configures a device for parallel polling using NI-488
functions. The device asserts DIO7 if its ist = 0.

In this example, the ibdev command is used to open a device that has a primary
address of 3, has no secondary address, has a timeout of 3 s, asserts EOI with the last
byte of a write operation, and has EOS characters disabled.

#include "decl.h"
char ppr;

dev = ibdev(0,3,0,T3s,1,0);

/* Pass the binary bit pattern, 0110 110 or hex 66, to ibppc.
*/

ibppc(dev, 0x66);

If the GPIB interface board configures itself for a parallel poll, you should still use
the ibppc function. Pass the board index or a board unit descriptor value as the
first argument in ibppc . In addition, if the individual status bit (ist) of the board
needs to be changed, use the ibist function.

In the following example, the GPIB board is to configure itself to participate in a
parallel poll. It asserts DIO5 when ist = 1 if a parallel poll is conducted.

ibppc(0, 0x6C);
ibist(0, 1);

Chapter 5 GPIB Programming Techniques

© National Instruments Corp. 5-11 NI-488.2 UM for Macintosh

2. Conduct the parallel poll using ibrpp and check the response for a certain value.
The following example code performs the parallel poll and compares the response to
hex 10, which corresponds to DIO5. If that bit is set, the ist of the device is 0.

ibrpp(dev, &ppr);
if (ppr & 0x10) printf("ist = 0\n");

3. Unconfigure the device for parallel polling with ibppc . Notice that any value
having the parallel poll disable bit set (bit 4) in the bit pattern disables the
configuration, so you can use any value between hex 70 and 7E.

ibppc(dev, 0x70);

Parallel Polling with NI-488.2 Routines

Follow these steps to implement parallel polling using NI-488.2 routines. Each step
contains example code.

1. Configure the device for parallel polling using the PPollConfig routine, unless
the device can configure itself for parallel polling. The following example
configures a device at address 3 to assert data line 5 (DIO5) when its ist value is 1.

#include "decl.h"
char response;
Addr4882_t AddressList[2];

/* The following command clears the GPIB. */

SendIFC(0);

/* The value of sense is compared with the ist bit of the
device
 and determines whether the data line is asserted. */

PPollConfig(0,3,5,1);

2. Conduct the parallel poll using PPoll, store the response, and check the response
for a certain value. In the following example, because DIO5 is asserted by the
device if ist = 1, the program checks bit 4 (hex 10) in the response to determine
the value of ist .

PPoll(0, &response);

/*If response has bit 4 (hex 10) set, the ist bit of the device
 at that time is equal to 0. If it does not appear, the ist
 bit is equal to 1. Check the bit in the following
statement.*/

if (response & 0x10) {
printf("The ist equals 1.\n");

}
else {

printf("The ist equals 0.\n");
}

GPIB Programming Techniques Chapter 5

NI-488.2 UM for Macintosh 5-12 © National Instruments Corp.

3. Unconfigure the device for parallel polling using the PPollUnconfig routine as
shown in the following example. In this example, the NOADDR constant must appear
at the end of the array to signal the end of the address list. If NOADDR is the only
value in the array, all devices receive the parallel poll disable message.

AddressList[0] = 3;
AddressList[1] = NOADDR;
PPollUnconfig(0, AddressList);

© National Instruments Corp. 6-1 NI-488.2 UM for Macintosh

Chapter 6
GPIB Configuration Utility

This chapter contains instructions for configuring the NI-488.2 software with the
NI-488 Config utility.

Overview

You can use the GPIB configuration utility, NI-488 Config , to view or change the
configuration settings of your NI-488.2 software. With NI-488 Config , you can
change the default GPIB settings that your interface board uses to communicate with
other devices. The utility edits the default GPIB configuration resources in the NI-488
INIT file. Help is available on the screen for modifying the current settings.

For specific information about possible settings, refer to the getting started manual that
came with your GPIB interface board or box.

Running the Configuration Utility

This section contains information on running the NI-488 Config configuration
utility. It explains how to use the utility and describes the configuration settings that you
can modify.

Opening the Configuration Utility

The NI-488 Config configuration utility appears in the Control Panels folder
when you install your NI-488.2 software. Open the Control Panels folder by
choosing Control Panels from the Apple menu .

To access NI-488 Config , double-click on the NI-488 Config icon. The utility
displays the currently defined values for characteristics of a particular device or bus, such
as addressing and timeout information. Help for modifying the current settings is
available at the bottom of the window.

The NI-488 Config configuration utility consists of three frames, arranged vertically
and separated by a heavy line. Each frame is labeled in Figure 6-1.

GPIB Configuration Utility Chapter 6

NI-488.2 UM for Macintosh 6-2 © National Instruments Corp.

Global Frame

Bus/Device Frame

Help Frame

Figure 6-1. Opening Screen of NI-488 Config

The global and bus/device frames contain the configuration characteristic settings. The
help frame displays information about the item over which the cursor is positioned.

The Interface Type and Bus/Device menus affect the display of configuration controls.
For example, selecting a serial interface hides the Auto Configure checkbox.

Chapter 6 GPIB Configuration Utility

© National Instruments Corp. 6-3 NI-488.2 UM for Macintosh

Default Configuration

Your NI-488.2 software is shipped with the following default configurations:

• The Auto Configure checkbox is selected.

• All buses are configured as shown in the bus/device frame in Figure 6-1.

• All devices are configured similarly to dev1 shown in the bus/device frame in
Figure 6-2. The devices dev1 through dev30 use bus gpib0 and are at the
primary addresses 1 through 30, respectively. The devices dev31 through dev60
use bus gpib1 and are at the primary addresses 1 through 30, respectively. The
devices dev61 through dev64 use bus gpib2 and are at the primary addresses 1
through 4, respectively.

Figure 6-2. Device Default Settings in NI-488 Config

GPIB Configuration Utility Chapter 6

NI-488.2 UM for Macintosh 6-4 © National Instruments Corp.

Control Items

NI-488 Config has four types of control items:

The rectangular boxes with drop
shadows and labels to the left have
pop-up menus of options. The
currently selected option is
displayed in the box. To select an
option on the pop-up menu, click
and hold down the mouse button
when the cursor is over the box.

A checkbox is a small square box
that contains an X when selected
and is labeled at the right or on the
top. An unselected checkbox
displays an alert box when
clicked.

A button is a rounded rectangular
box.

An editable text box is a
rectangular box labeled to the left.

Chapter 6 GPIB Configuration Utility

© National Instruments Corp. 6-5 NI-488.2 UM for Macintosh

Help Frame

When you place the cursor over any configuration item, a help message for that item
appears in the help frame. Figure 6-3 shows the default configuration for bus gpib0 .
The global frame shows the automatic association of bus gpib0 with a GPIB board
installed in System slot 3 (NuBus slot xB). The cursor is positioned over the Auto
Configure checkbox and a corresponding help message appears in the help frame.

Figure 6-3. Help Frame in NI-488 Config

GPIB Configuration Utility Chapter 6

NI-488.2 UM for Macintosh 6-6 © National Instruments Corp.

Global Frame

The Interface Type pop-up menu options let you switch the checkboxes among interface
types. Choose NuBus boards for boards, such as the NB-GPIB-P/TNT or NB-GPIB-P,
installed in a NuBus Macintosh. The Serial box products option applies to the
GPIB-422CT or GPIB-232CT-A, the Ethernet box products option applies to the
GPIB-ENET, and the SCSI box products option applies to the GPIB-SCSI or
GPIB-SCSI-A. For specific information on configuring one of those products, refer to
the getting started manual that came with the product.

To the upper right of the Interface Type menu box is a row of interface checkboxes with
which you can associate an IEEE 488 bus. Slot numbers appear above the checkboxes,
and associated bus numbers, if any, appear below the checkboxes. To manually associate
a bus with an interface, first unselect Auto Configure . When you select an interface
checkbox with Auto Configure selected, the next available bus is assigned to it.
Figure 6-4 shows the manual association of bus 0 to System slot 3 (NuBus slot xB).

Figure 6-4. Manual Bus Association in NI-488 Config

Chapter 6 GPIB Configuration Utility

© National Instruments Corp. 6-7 NI-488.2 UM for Macintosh

Selecting the Auto Configure checkbox in the global frame automatically configures the
buses according to the way the boards are contained in the system. When Auto
Configure is checked, each bus, gpib0 through gpib7 , is associated with the next
GPIB board found by the Slot Manager when searching System slots 1 through 6 (NuBus
slots 9 through E) and expansion slots x1 through x8 (NuBus slots 1 through 8). Select
the Auto Configure checkbox unless your application requires compatibility with older
releases of the NI-488.2 driver, where the naming conventions of the buses are different.
Do not check the Auto Configure checkbox if you want to change the order that
device-identifying software uses GPIB interfaces.

Bus/Device Frame

Items in the bus/device frame configure characteristics of a bus, a device, or either.
Table 6-1 lists the primary bus/device options available in NI-488 Config . The
sections following the table describe the options in more detail.

For information on product-specific options, such as the Serial or IP Address pop-up
boxes, refer to the getting started manual that came with your GPIB hardware.

Table 6-1. Bus/Device Options in NI-488 Config

Option Type Default Setting

Primary Address Bus/Device 0

Secondary Address Bus/Device None

Timeout Bus/Device 10 sec

Read END on EOS Bus/Device Disabled

Write END on EOS Bus/Device Disabled

Write END on Last Byte Bus/Device Enabled

8-bit EOS Bus/Device Disabled

EOS Byte Bus/Device 0

Bus Timing Bus Only (Interface-specific)

TNT High Speed Bus Only Disabled

DMA Bus Only Disabled

System Controller Bus Only Enabled

Assert REN when System Bus Only Enabled

Unaddressing Bus Only Disabled

Repeat Addressing Bus Only Disabled

Rename Device Device Only dev1-dev64

Use Bus Device Only gpib0

GPIB Configuration Utility Chapter 6

NI-488.2 UM for Macintosh 6-8 © National Instruments Corp.

Options for Buses or Devices

Select the device or bus you want to configure from the Bus/Device pop-up menu. The
following sections describe the options available for buses or devices. Also refer to the
subsequent sections Options for Buses Only and Options for Devices Only .

 Primary Address

Each device and bus must have unique primary addresses in the range decimal 0 to
decimal 30 (hex 1E). The primary GPIB address of any device is set within that device,
either with hardware switches or, in some cases, a software program. This address must
match the address listed in the configuration utility. Refer to the device documentation
for instructions about the device address. The primary GPIB address of all NI-488.2
driver buses is 0, unless changed by the configuration utility. There are no hardware
switches on the interface board to select the GPIB address. Use the Primary Address
pop-up menu to select the primary address of the bus or device.

 Secondary Address

You must assign a secondary address in the range decimal 96 (hex 60) to decimal 126
(hex 7E) to any device or bus using secondary addressing. As with primary addressing,
the secondary GPIB address of any device is set within that device, either with hardware
switches or, in some cases, a software program. This address must match the address
listed in the configuration utility. Refer to your device documentation for instructions.
By default, secondary addressing is disabled for all devices and boards unless you change
it with the configuration utility.

Select the secondary address of the bus or device from the Secondary Address pop-up
menu. The secondary addresses are displayed in three formats: zero-based, decimal, and
hexadecimal. Only the zero-based format is displayed in the pop-up menu box.
Selecting None means that only primary addressing is used for this bus or device. If you
configure any bus or device for secondary addressing, all buses and devices used by the
application must be configured for secondary addressing.

 Timeout

The timeout value is the approximate length of time that can elapse before I/O functions
complete. Select the I/O timeout of the bus or device from the Timeout pop-up menu.
The abbreviations used in the Timeout pop-up menu are: µsec (microseconds), msec
(milliseconds), and sec (seconds). Selecting None means I/O for this bus or device will
never time out.

Chapter 6 GPIB Configuration Utility

© National Instruments Corp. 6-9 NI-488.2 UM for Macintosh

 EOS Modes

The options described below determine how the device I/O transmissions terminate:

• Read END on EOS – Some devices send an EOS byte signaling the last byte of a
data message. Checking this box causes the NI-488.2 software to terminate read
operations when it receives the EOS byte.

• Write END on EOS – Checking this box causes the NI-488.2 software to assert the
EOI (send END) line when the EOS character is sent.

• Write END on Last Byte – Some devices, as Listeners, require that the Talker
terminate a data message by asserting the EOI signal line (sending END) with the
last byte. Checking this box causes the NI-488.2 software to assert EOI on the last
data byte.

• 8-bit EOS– Along with the designation of an EOS character, you can specify
whether all eight bits are compared to detect EOS, or if just the seven least
significant bits (ASCII or ISO format) are compared to detect EOS.

 EOS Byte

You can program some devices to terminate a read operation when a selected character is
detected. A linefeed character (decimal 10) is a popular EOS character.

Notice that to send the EOS character to a device in a write operation, you must explicitly
include that byte in your data string.

Enter the EOS byte (0 to 255) of the bus or device in the EOS Byte editable text box. To
change the EOS byte, click inside the box, enter the new number, and press the <return>
key.

Options for Buses Only

Select the device you want to configure from the Bus/Device pop-up menu. The
following sections describe the available bus options. See also the section Options for
Buses or Devices earlier in this chapter.

 Bus Timing

This pop-up menu appears when configuring a bus associated with a NAT4882-based
interface, such as the NB-GPIB-P. You can use it to specify the T1 delay of the board
source handshake capability. This delay determines the minimum interval following
Ready for Data (RFD) after which the board may assert Data Valid (DAV) during a write
or command operation. If the total length of the GPIB cable in the system is less than

GPIB Configuration Utility Chapter 6

NI-488.2 UM for Macintosh 6-10 © National Instruments Corp.

15 m and all devices are on, you can choose the sub-item Very High (350 ns) from the
NAT4882 Timing pop-up menu. For total cable lengths greater than 15 m, choose Low
(2 µs) or High (500 ns) depending on the maximum capability of your particular device.

 TNT High Speed

If you are using a National Instruments TNT4882C-based interface, such as the
NB-GPIB-P/TNT, a second item, TNT High Speed, appears enabled. Initially, the
sub-item High Speed Mode Disabled is checked. If your device is capable of 1-wire
high-speed handshaking, you can enable the HS488 high-speed protocol by choosing the
sub-item corresponding to the total GPIB cable length of your setup. For maximum
performance, select the sub-item GPIB cable is 1 meter.

 DMA

When the DMA box is checked, direct memory access hardware is used for data
transfers, freeing the CPU for other work. Uncheck the DMA box to transfer data using
the CPU. DMA channels are allocated for GPIB when you check the DMA box or call
the ibdma function with v = 1 in an application program.

 System Controller

Generally, the NI-488.2 driver is the System Controller (SC). In some situations, such as
in a network of computers linked by the GPIB, another device might be System
Controller. Selecting the System Controller box designates the NI-488.2 driver as
System Controller. Unselecting the box designates that it is not System Controller. Each
bus can have only one System Controller.

 Assert REN when System (Controller)

Some devices must be in remote state to communicate over the GPIB. Checking this box
permits the driver to assert the Remote Enable condition (REN) when it is System
Controller, placing all instruments subsequently addressed into remote state.

 Unaddressing

Some devices must be unaddressed after each data or command transfer. To force
unaddressing commands to be sent at the end of device functions, check the
Unaddressing box. (Unchecking the Unaddressing box slightly improves the
performance of your application, because unaddressing commands are not sent at the end
of device functions.)

Chapter 6 GPIB Configuration Utility

© National Instruments Corp. 6-11 NI-488.2 UM for Macintosh

 Repeat Addressing

Normally, a device remains addressed after a read or write operation is performed.
However, some devices require addressing for each operation. If you check the Repeat
Addressing box, read or write operations readdress the selected device even if the same
operation was just performed with that device.

Options for Devices Only

Select the device you want to configure from the Bus/Device pop-up menu. The device
is connected to the bus number that appears in the Use Bus text box. The following
sections describe the available device options. See also the section Options for Buses or
Devices earlier in this chapter.

 Rename Device

You can rename the device displayed in the Bus/Device pop-up menu by clicking the
Rename Device button and entering the new name. This feature is helpful when
configuring a large number of devices, because the new name of the device that you
entered appears in the Bus/Device pop-up menu. However, to avoid the confusion of
naming and renaming devices, use the NI-488 function ibdev in new applications to
dynamically configure new devices. You can use ibdev to configure the driver from
your program instead of from the configuration utility.

 Use Bus

You can connect the device displayed on the Bus/Device pop-up menu to a different bus
by selecting the new bus from the Use Bus pop-up menu. The new bus number appears
to the left of the device name in the Bus/Device pop-up menu.

Exiting the Configuration Utility

To exit the configuration utility, click on the close box in the upper left corner of the
configuration screen.

An alert message displays if you close the utility while any of the following conditions
applies.

• The Macintosh must be restarted to load new drivers or change the serial port
settings.

• A device GPIB address conflicts with the GPIB address of the bus to which it is
connected. Each GPIB address must be unique.

GPIB Configuration Utility Chapter 6

NI-488.2 UM for Macintosh 6-12 © National Instruments Corp.

• No GPIB board is in the slot associated with one of the buses.

• A bus or device I/O timeout is set to None (disabled).

© National Instruments Corp. A-1 NI-488.2 UM for Macintosh

Appendix A
Status Word Conditions

This appendix gives a detailed description of the conditions reported in the status word,
ibsta .

For information about how to use ibsta in your application program, refer to Chapter 2,
Developing Your Application.

If a function call returns an ENEB or EDVR error, all status word bits except the ERR bit
are cleared, indicating that it is not possible to obtain the status of the GPIB board.

Each bit in ibsta can be set for device calls (dev), board calls (brd), or both (dev, brd).

The following table lists the status word bits.

Mnemonic
Bit
Pos.

Hex
Value Type Description

ERR 15 8000 dev, brd GPIB error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting service

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State

Status Word Conditions Appendix A

NI-488.2 UM for Macintosh A-2 © National Instruments Corp.

ERR (dev, brd)

ERR is set in the status word following any call that results in an error. You can
determine the particular error by examining the error variable iberr . Appendix B,
Error Codes and Solutions, describes error codes that are recorded in iberr along with
possible solutions. ERR is cleared following any call that does not result in an error.

TIMO (dev, brd)

TIMO indicates that the timeout period has been exceeded. TIMO is set in the status
word following an ibwait call if the TIMO bit of the ibwait mask parameter is set
and the time limit expires. TIMO is also set following any synchronous I/O functions
(for example, ibcmd , ibrd , ibwrt , Receive , Send , and SendCmds) if a timeout
occurs during one of these calls. TIMO is cleared in all other circumstances.

END (dev, brd)

END indicates either that the GPIB EOI line has been asserted or that the EOS byte has
been received, if the software is configured to terminate a read on an EOS byte. If the
GPIB board is performing a shadow handshake as a result of the ibgts function, any
other function can return a status word with the END bit set if the END condition occurs
before or during that call. END is cleared when any I/O operation is initiated.

Some applications might need to know the exact I/O read termination mode of a read
operation – EOI by itself, the EOS character by itself, or EOI plus the EOS character.
You can use the ibconfig function (option IbcEndBitIsNormal) to enable a
mode in which the END bit is set only when EOI is asserted. In this mode, if the I/O
operation completes because of the EOS character by itself, END is not set. The
application should check the last byte of the received buffer to see if it is the EOS
character.

SRQI (brd)

SRQI indicates that a GPIB device is requesting service. SRQI is set whenever the GPIB
board is CIC, the GPIB SRQ line is asserted, and the automatic serial poll capability is
disabled. SRQI is cleared either when the GPIB board ceases to be the CIC or when the
GPIB SRQ line is unasserted.

RQS (dev)

RQS appears in the status word only after a device-level call and indicates that the device
is requesting service. RQS is set whenever bit 6 is asserted in the serial poll status byte
of the device. The serial poll that obtains the status byte can be the result of a call to

Appendix A Status Word Conditions

© National Instruments Corp. A-3 NI-488.2 UM for Macintosh

ibrsp , or the poll might be automatic if automatic serial polling is enabled. Do not
issue an ibwait on RQS for a device that does not respond to serial polls. RQS is
cleared when an ibrsp reads the serial poll status byte that caused the RQS.

CMPL (dev, brd)

CMPL indicates the condition of I/O operations. It is set whenever an I/O operation is
complete. CMPL is cleared while the I/O operation is in progress.

LOK (brd)

LOK indicates whether the board is in a lockout state. While LOK is set, the
EnableLocal routine or ibloc function is inoperative for that board. LOK is set
whenever the GPIB board detects that the Local Lockout (LLO) message has been sent
either by the GPIB board or by another Controller. LOK is cleared when the System
Controller unasserts the Remote Enable (REN) GPIB line.

REM (brd)

REM indicates whether or not the board is in the remote state. REM is set whenever the
Remote Enable (REN) GPIB line is asserted and the GPIB board detects that its listen
address has been sent either by the GPIB board or by another Controller. REM is cleared
in the following situations:

• When REN becomes unasserted

• When the GPIB board as a Listener detects that the Go to Local (GTL) command has
been sent either by the GPIB board or by another Controller

• When the ibloc function is called while the LOK bit is cleared in the status word

CIC (brd)

CIC indicates whether the GPIB board is the Controller-In-Charge. CIC is set when the
SendIFC routine or ibsic function is executed either while the GPIB board is System
Controller or when another Controller passes control to the GPIB board. CIC is cleared
either when the GPIB board detects Interface Clear (IFC) from the System Controller or
when the GPIB board passes control to another device.

ATN (brd)

ATN indicates the state of the GPIB Attention (ATN) line. ATN is set whenever the
GPIB ATN line is asserted, and it is cleared when the ATN line is unasserted.

Status Word Conditions Appendix A

NI-488.2 UM for Macintosh A-4 © National Instruments Corp.

TACS (brd)

TACS indicates whether the GPIB board is addressed as a Talker. TACS is set whenever
the GPIB board detects that its talk address (and secondary address, if enabled) has been
sent either by the GPIB board itself or by another Controller. TACS is cleared whenever
the GPIB board detects the Untalk (UNT) command, its own listen address, a talk address
other than its own talk address, or Interface Clear (IFC).

LACS (brd)

LACS indicates whether the GPIB board is addressed as a Listener. LACS is set
whenever the GPIB board detects that its listen address (and secondary address, if
enabled) has been sent either by the GPIB board itself or by another Controller. LACS is
also set whenever the GPIB board shadow handshakes as a result of the ibgts function.

LACS is cleared whenever the GPIB board detects the Unlisten (UNL) command, its own
talk address, Interface Clear (IFC), or that the ibgts function has been called without
shadow handshake.

DTAS (brd)

DTAS indicates whether the GPIB board has detected a device trigger command. DTAS
is set whenever the GPIB board, as a Listener, detects that the Group Execute Trigger
(GET) command has been sent by another Controller. DTAS is cleared on any call
immediately following an ibwait call, if the DTAS bit is set in the ibwait mask
parameter.

DCAS (brd)

DCAS indicates whether the GPIB board has detected a device clear command. DCAS is
set whenever the GPIB board detects that the Device Clear (DCL) command has been
sent by another Controller, or whenever the GPIB board as a Listener detects that the
Selected Device Clear (SDC) command has been sent by another Controller. DCAS is
cleared on any call immediately following an ibwait call, if the DCAS bit was set in
the ibwait mask parameter. It also clears on any call immediately following a read or
write.

© National Instruments Corp. B-1 NI-488.2 UM for Macintosh

Appendix B
Error Codes and Solutions

This appendix lists a description of each error, some conditions under which it might
occur, and possible solutions.

The following table lists the GPIB error codes.

Error
Mnemonic

iberr
Value Meaning

EDVR 0 System error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

EDMA 8 No DMA channel available

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow

ESRQ 16 SRQ stuck in ON position

ETAB 20 Table problem

ELCK 21 Board or device is locked

EDVR (0)

EDVR is returned when the board or device name passed to ibfind is not configured in
the software.

EDVR is also returned when an invalid unit descriptor is passed to any function call.

Error Codes and Solutions Appendix B

NI-488.2 UM for Macintosh B-2 © National Instruments Corp.

EDVR is also returned when the driver is not installed. In this case, ibcnt contains a
system level error code.

Solutions

• Use ibdev to open a device without specifying its symbolic name.

• Use only device or board names that are configured in the utility program NI-488
Config as parameters in the ibfind function.

• Use the unit descriptor returned from the ibfind function as the first parameter in
subsequent NI-488 functions. Examine the variable after the ibfind and before the
failing function to make sure it was not corrupted.

• Make sure the NI-488.2 driver is installed by checking to see if NI-488 INIT is in
the Extensions folder in the System Folder .

ECIC (1)

ECIC is returned when one of the following board functions or routines is called while
the board is not CIC:

• Any device-level NI-488 functions that affect the GPIB

• Any board-level NI-488 functions that issue GPIB command bytes such as ibcmd ,
ibcmda , ibln , ibrpp

• ibcac , ibgts

• Any of the NI-488.2 routines that issue GPIB command bytes such as SendCmds ,
PPoll , Send , Receive

Solutions

• Use ibsic or SendIFC to make the GPIB board become CIC on the GPIB.

• Use ibrsc 1 to make sure your GPIB board is configured as System Controller.

• In multiple CIC situations, always be certain that the CIC bit appears in the status
word ibsta before attempting these calls. If it does not appear, you can perform an
ibwait (for CIC) call to delay further processing until control is passed to the
board.

Appendix B Error Codes and Solutions

© National Instruments Corp. B-3 NI-488.2 UM for Macintosh

ENOL (2)

ENOL usually occurs when a write operation is attempted with no Listeners addressed.
For a device write, this error indicates that the GPIB address configured for that device in
the software does not match the GPIB address of any device connected to the bus, that
the GPIB cable is not connected to the device, or that the device is not powered on.

ENOL can occur in situations in which the GPIB board is not the CIC and the Controller
asserts ATN before the write call in progress has ended.

Solutions

• Make sure that the GPIB address of your device matches the GPIB address of the
device to which you want to write data.

• Use the appropriate hex code in ibcmd to address your device.

• Check your cable connections and make sure at least two-thirds of your devices are
powered on.

• Call ibpad (or ibsad , if necessary) to match the configured address to the device
switch settings.

• Reduce the write byte count to that which is expected by the Controller.

EADR (3)

EADR occurs when the GPIB board is CIC and is not properly addressing itself before
read and write functions. This error is usually associated with board-level functions.

EADR is also returned by the function ibgts when the shadow-handshake feature is
requested and the GPIB ATN line is already unasserted. In this case, the shadow
handshake is not possible and the error is returned to notify you of that fact.

Solutions

• Make sure that the GPIB board is addressed correctly before calling ibrd , ibwrt ,
RcvRespMsg , or SendDataBytes .

• Avoid calling ibgts except immediately after an ibcmd call. (ibcmd causes ATN
to be asserted.)

Error Codes and Solutions Appendix B

NI-488.2 UM for Macintosh B-4 © National Instruments Corp.

EARG (4)

EARG results when an invalid argument is passed to a function call. The following are
some examples:

• ibtmo called with a value not in the range 0 through 17

• ibpad or ibsad called with invalid addresses

• ibppc called with invalid parallel poll configurations

• A board-level NI-488 call made with a valid device descriptor or a device-level
NI-488 call made with a board descriptor

• An NI-488.2 routine called with an invalid address

• PPollConfig called with an invalid data line or sense bit

Solutions

• Make sure that the parameters passed to the NI-488 function or NI-488.2 routine are
valid.

• Do not use a device descriptor in a board function or vice-versa.

ESAC (5)

ESAC results when ibsic , ibsre , SendIFC , or EnableRemote is called when the
GPIB board does not have System Controller capability.

Solutions

Give the GPIB board System Controller capability by calling ibrsc 1 or by using
NI-488 Config to configure that capability into the software.

EABO (6)

EABO indicates that an I/O operation has been canceled, usually due to a timeout
condition. Other causes for this error are calling ibstop or receiving the Device Clear
message from the CIC while performing an I/O operation.

Frequently, the I/O is not progressing (the Listener is not continuing to handshake or the
Talker has stopped talking), or the byte count in the call which timed out was more than
the other device was expecting.

Appendix B Error Codes and Solutions

© National Instruments Corp. B-5 NI-488.2 UM for Macintosh

Solutions

• Use the correct byte count in input functions or have the Talker use the END
message to signify the end of the transfer.

• Lengthen the timeout period for the I/O operation using ibtmo .

• Make sure that you have configured your device to send data before you request
data.

ENEB (7)

ENEB occurs when there is no GPIB board present. This happens when the board is not
physically plugged into the system, or there is a conflict in the system.

Solutions

Verify that all GPIB interfaces and external controller boxes are plugged in securely,
powered on, and configured properly in the GPIB configuration.

EDMA (8)

EDMA occurs when the driver is unable to allocate a DMA channel.

Solutions

Verify that other boards are not using all seven available DMA channels. Disconnect the
RTSI connector from the other DMA boards temporarily.

EOIP (10)

EOIP occurs when an asynchronous I/O operation has not finished before some other call
is made. During asynchronous I/O, you can only use ibstop , ibwait , and ibonl , or
perform other non-GPIB operations. Once the asynchronous I/O has begun, further GPIB
calls other than ibstop , ibwait , or ibonl are strictly limited. If a call might
interfere with the I/O operation in progress, the driver returns EOIP.

Error Codes and Solutions Appendix B

NI-488.2 UM for Macintosh B-6 © National Instruments Corp.

Solutions

Resynchronize the driver and the application before making any further GPIB calls.
Resynchronization is accomplished by using one of the following three functions:

• ibwait If the returned ibsta contains CMPL then the driver and application
are resynchronized.

• ibstop The I/O is canceled; the driver and application are resynchronized.

• ibonl The I/O is canceled and the interface is reset; the driver and application
are resynchronized.

ECAP (11)

ECAP results when your GPIB board lacks the ability to carry out an operation or when a
particular capability has been disabled in the software and a call is made that requires the
capability.

Solutions

Check the validity of the call, or make sure your GPIB interface board and the driver both
have the needed capability.

EFSO (12)

EFSO results when an ibrdf or ibwrtf call encounters a problem performing a file
operation. Specifically, this error indicates that the function is unable to open, create,
seek, write, or close the file being accessed. The specific system error code for this
condition is contained in ibcnt .

Solutions

• Make sure the file is in the same folder as your application.

• Make sure there is enough room on the disk to hold the file.

EBUS (14)

EBUS results when certain GPIB bus errors occur during device functions. All device
functions send command bytes to perform addressing and other bus management.
Devices are expected to accept these command bytes within the time limit specified by

Appendix B Error Codes and Solutions

© National Instruments Corp. B-7 NI-488.2 UM for Macintosh

the default configuration or the ibtmo function. EBUS results if a timeout occurred
while sending these command bytes.

Solutions

• Verify that the instrument is operating correctly.

• Check for loose or faulty cabling or several powered-off instruments on the GPIB.

• If the timeout period is too short for the driver to send command bytes, increase the
timeout period.

ESTB (15)

ESTB is reported only by the ibrsp function. ESTB indicates that one or more serial
poll status bytes received from automatic serial polls have been discarded because of a
lack of storage space. Several older status bytes are available; however, the oldest is
being returned by the ibrsp call.

Solutions

• Call ibrsp more frequently to empty the queue.

• Disable autopolling with the ibconfig function or the NI-488 Config utility.

ESRQ (16)

ESRQ occurs only during the ibwait function or the WaitSRQ routine. ESRQ
indicates that a wait for RQS is not possible because the GPIB SRQ line is stuck on. This
situation can be caused by the following events:

• Usually, a device unknown to the software is asserting SRQ. Because the software
does not know of this device, it can never serial poll the device and unassert SRQ.

• A GPIB bus tester or similar equipment might be forcing the SRQ line to be asserted.

• A cable problem might exist involving the SRQ line.

Although the occurrence of ESRQ warns you of a definite GPIB problem, it does not
affect GPIB operations, except that you cannot depend on the RQS bit while the
condition lasts.

Error Codes and Solutions Appendix B

NI-488.2 UM for Macintosh B-8 © National Instruments Corp.

Solutions

Check to see if other devices not used by your application are asserting SRQ. Disconnect
them from the GPIB if necessary.

ETAB (20)

ETAB occurs only during the FindLstn , FindRQS , and ibevent functions. ETAB
indicates that there was some problem with a table used by these functions.

• In the case of FindLstn , ETAB means that the given table did not have enough
room to hold all the addresses of the Listeners found.

• In the case of FindRQS , ETAB means that none of the devices in the given table
were requesting service.

• In the case of ibevent , ETAB means the event queue overflowed and event
information was lost.

Solutions

In the case of FindLstn , increase the size of result arrays. In the case of FindRQS ,
check to see if other devices not used by your application are asserting SRQ. Disconnect
them from the GPIB if necessary. In the case of ETAB returned from ibevent , call
ibevent more often to empty the queue.

ELCK (21)

ELCK occurs if the requested GPIB-ENET board or device is being used through another
connection.

Solutions

Wait for the lock on the board or device to be released, or try using ibunlock if you
previously used iblock to lock access to the connection.

© National Instruments Corp. C-1 NI-488.2 UM for Macintosh

Appendix C
Device Manager Interface

This chapter contains information for programming your GPIB interface from any
language using the Device Manager functions.

The examples in this appendix are in C language syntax.

Overview

You might want to use the Device Manager if you need to make asynchronous calls or
you require completion routines for your application. You can make NI-488 calls using
the Macintosh Device Manager. The NI-488.2 software also supports the high-level
Device Manager routines (OpenDriver , CloseDriver , and Control) and the
low-level Device Manager routines (PBOpen , PBClose , and PBControl). Refer to
the Device Manager chapter of Inside Macintosh, Volume II, for a thorough explanation
of these routines.

Opening the GPIB Driver

Before you use any of the Device Manager calls, you must open the NI-488.2 driver with
an OpenDriver call. This call gives the name of the driver to be opened, GPIB
Driver , and returns the refNum of the driver to be used in all subsequent control calls
to the NI-488.2 driver. An example of the OpenDriver call is as follows:

osErr = OpenDriver("\P.GPIB Driver", &refNum);

Note: A common Macintosh system error of BdNumErr (-37) returned by
OpenDriver usually indicates that this routine has been given a bad string
for the driver name. Refer to the documentation of the compiler being used to
determine if a C string (NULL terminated) or a Pascal string (initial length
byte) is needed for this Device Manager call.

All other NI-488 functions are then accessed with control calls to the Device Manager.
The refNum (returned in the OpenDriver call), control number, and handle to the
parameter block are passed as parameters.

Device Manager Interface Appendix C

NI-488.2 UM for Macintosh C-2 © National Instruments Corp.

Making Control Calls

Each function has an identifying constant which you can use by including the header file
DrInterface.h , which is found in the C LI folder. You can identify which function
you are using by the constant name as shown in the following example:

osErr = Control(refNum, ibCAC, ¶mBlk)

The constant name ibCAC indicates the function code sent to the driver.

Using Asynchronous Low-Level Device Manager Calls

You can use low-level asynchronous NI-488 and NI-488.2 Device Manager calls with
optional completion routines if you are using the NB Handler INIT version 4.4 or
later, or NI-488 INIT version 5.0 or later.

Set the asynchronous parameter of the low-level Device Manager call to TRUE to make
the call asynchronous to the NI-488 driver. Refer to the Device Manager chapter of
Inside Macintosh, Volume II, for more information on these parameters.

Note: Because of the limitations of the TCP interface, do not make any low-level
asynchronous function calls which would directly or indirectly cause the
GPIB-ENET bus to be put online or offline. These function calls include
ibbna , ibonl , ibfind , and ibdev . Using these functions will result in
synchronous behavior, but will not be destructive .

Using Completion Routines

If you want to use a completion routine, place the address of the routine in the
ioCompletion field of the low-level parameter block. Do not enter a null address; the
function call would behave asynchronously and no completion routine would be
executed.

You must save a copy of register A5 so that the completion routine can access it at
execution time. This is accomplished by using RememberA5() to save a copy of the
A5 register in the void function GetA5() . Place the RememberA5() code as the first
statement in the main function body.

Use SetUpA5() in the beginning of the completion routine to retrieve the saved copy of
the A5 register, and RestoreA5() at the end of the completion routine to restore A5
back to its original value.

Before the completion routine is called, register A0 is loaded with a pointer to the control
block of the function performing the call. You can use the control block to determine
which function call is completing.

Appendix C Device Manager Interface

© National Instruments Corp. C-3 NI-488.2 UM for Macintosh

The completion routine must preserve registers D2 through D7 and A2 through A4.
Refer to the Device Manager chapter of Inside Macintosh, Volume II, for a more detailed
explanation on which registers need to be preserved by completion routines.

The completion routine must not make any calls to the Memory Manager, either directly
or indirectly, and cannot assume that any handles to unlocked blocks are valid. You need
to evaluate your completion routine to determine whether it makes any calls that will
directly or indirectly call the Memory Manager. National Instruments recommends
against using any calls in the completion routine that are not specifically designated as
safe by Inside Macintosh. Table B.1 in Appendix B of Inside Macintosh, Volume VI,
lists the routines that may move or purge memory.

Printing Considerations

Considerations such as printing to the screen must be evaluated on a per-application
basis. The application might be in the background and may not be the currently
executing application. In such a case, printing directly to the application's window will
cause adverse results.

Using Control Block Structures

Always use separate control block structures when you are making concurrent
asynchronous calls to the NI-488.2 driver. If the completion routine has not been
invoked from a previous asynchronous call, the main application code should not
interfere with the fields inside the old control block, which invalidates the data in the
control block structure for that call. The call may still be in the driver, and the field
should not be altered until the completion routine for that function is called.

Invalid data also results from using a completion routine stack-based control block
structure to make asynchronous calls from within the completion routine. An
asynchronous call made in this manner fails because the completion routine may exit and
deallocate the stack space before the call actually gets executed in the driver.

Calling ibrda, ibwrta, and ibcmda Asynchronously

The functions ibrda , ibrwta , and ibcmda have a unique definition regarding the
execution of their completion routines if your application calls those functions
asynchronously from the Device Manager.

In a typical application, ibrda , ibwrta , and ibcmda are called from the language
interface and result in an immediate return of control to the user regardless of whether the
I/O operation completed or not. Then ibwait is usually called to wait for the I/O to
complete.

Device Manager Interface Appendix C

NI-488.2 UM for Macintosh C-4 © National Instruments Corp.

When these functions are called asynchronously from the Device Manager, any
completion routine specified will execute immediately. This result occurs because, by
definition, the synchronous portion of the call is complete even though the actual
asynchronous portion of the call may not have completed.

If an ibwait is issued asynchronously through the Device Manager, its completion
routine executes when the condition of the wait bits is satisfied.

National Instruments recommends against calling ibrda , ibwrta , and ibcmda
asynchronously, even though they may function properly in theory. Instead, you can call
ibrd , ibwrt , and ibcmd asynchronously from the Device Manager for most
applications.

Parameter Block Structures and Examples

Parameters are passed to the device driver using a parameter block. The GPIB parameter
block is gpibBlock (shown below using C syntax). short and long refer to 16-bit
and 32-bit integers, respectively. A handle to this parameter block is passed as an
argument to the high-level device driver Manager Control function. A pointer to this
parameter block is the last field of the control parameter block (MyCntrlParam) passed
to the low-level Device Manager PBControl function.

typedef struct StatusBlk{
short ibsta;
short iberr;
short ibret; /* The four GPIB status variables */
long ibcnt;

} StatusBlk;

typedef struct gpibBlock
{

StatusBlk *statusBlk;
short id;
short controlVar; /* Control variable for some functions
*/

/* to indicate nature of action */

Ptr IOBufPtr; /* Pointer to the buffer in */
/* user area, during I/O calls */

long IOCount; /* I/O byte count */
short* addr ;
short* result;
short limit ;
void (*srqservice) () ;

} gpibBlock;

The parameter block used for low-level device driver calls is a variant of the standard
Control and Status parameter block. It is defined below as MyCntrlParam .

Appendix C Device Manager Interface

© National Instruments Corp. C-5 NI-488.2 UM for Macintosh

/* parameter block for low-level Control/Status calls */
typedef struct
{

QElemPtr qLink;
Int16 qType;
Int16 ioTrap;
Ptr ioCmdAddr;
ProcPtr ioCompletion;
OsErr ioResult;
StringPtr ioNamePtr;
Int16 ioVRefNum;
Int16 ioRefNum;/* driver routine ID */
Int16 csCode;
Ptr niParam; /* pointer to NBParamBlock

(gpibBlock) */
} MyCntrlParam;

typedef MyCntrlParam *MyCntrlPtr;

The last element, niParam , is a pointer to the function-specific parameter block,
gpibBlock , as used in high-level Device Manager control calls.

Although the same parameter block, gpibBlock , is used for all NI-488 control
functions, all parameters are not used by all functions. The NI-488.2 Function Reference
Manual for Macintosh describes each function, the parameters used, their interpretation
by the driver, and examples for calling each function (refer to the LI.C file). All
examples are from the C language interface, using high-level Device Manager calls. All
languages that permit toolbox calls can access the NI-488.2 driver in a similar manner.

Example Application (Low-Level Asynchronous with
Completion Routines)

The following example program demonstrates how to correctly code your application to
make asynchronous low-level Device Manager calls to the NI-488.2 driver. The sections
following the example program explain segments of the program code in more detail.

The application attempts to read a chunk of data TOTALBYTES long in MAXBUF byte
increments from a fictitious device at primary address 1. The completion routine
continues to execute ibrds until END is received in ibsta , or the total number of bytes
read equals TOTALBYTES .

/**/
/* */
/* Example Program Using Asynchronous */
/* */
/* Device Manager Calls */
/* */
/**/

#include <Devices.h> /* for OpenDriver() */
#include <Events.h> /* for GetNextEvent() */
#include <Stdio.h> /* for printf() */

Device Manager Interface Appendix C

NI-488.2 UM for Macintosh C-6 © National Instruments Corp.

#include "decl.h" /* NI header file */
#include "DrInterface.h" /* NI header file */

/**/
/* */
/* Prototypes */
/* */
/**/

static void GetA5 (void);
 void Completion_Routine(void);

/**/
/* */
/* Constants */
/* */
/**/

#define MAXBUF 50L /* read block size */
#define TOTALBYTES 1000000L /* total bytes to read */

/**/
/* */
/* Function: static void GetA5(void): */
/* */
/* Purpose: Used in A5 register macros below. */
/* */
/**/

static void GetA5(void)
{
asm {

 bsr.s @LAB
 dc.l 0 ; Place A5 here

@LAB move.l (sp)+,a1
}

}

/**/
/* */
/* Macro: RememberA5() */
/* */
/* Purpose: Place the value of A5 into the GetA5() function */
/* body. */
/* */
/**/

#define RememberA5() { \
 GetA5(); \
 asm {move.l A5,(a1)} \
 }

Appendix C Device Manager Interface

© National Instruments Corp. C-7 NI-488.2 UM for Macintosh

/**/
/* */
/* Macro: SetUpA5() */
/* */
/* Purpose: Save the current value of A5 on the stack and */
/* retrieve the globals pointer A5 from the GetA5() */
/* function body. */
/* */
/**/

#define SetUpA5() { \
 asm {move.l A5,-(sp)} \
 GetA5(); \
 asm {move.l (a1),A5 } \
 }

/**/
/* */
/* Macro: RestoreA5() */
/* */
/* Purpose: Retrieve the previous value of A5 from the stack */
/* and place it in register A5. */
/* */
/**/

#define RestoreA5() { \
 asm { move.l (sp)+,A5 } \
 }

/**/
/* */
/* Application Globals */
/* */
/**/

int brdID; /* id of gpib0 */
long totalread; /* total read */
char buffer[MAXBUF]; /* read buffer */
Boolean Finished = false; /* loop control variable */

/* Control Block for board setup calls */

MyNI488CntrlParam* cr_cp; /* pointer to control block */
MyNI488CntrlParam cr_ctParam; /* control block for comp rtn calls */
gpibBlock cr_gpibBlk; /* gpib parameter block */
gpibBlock* cr_gpibBlkPtr; /* gpib parameter block pointer */
StatusBlk cr_status; /* completion routine status block */

/* Control Block for ibrd calls made from completion routine */

MyNI488CntrlParam* cp; /* pointer to control block */
MyNI488CntrlParam ctParam; /* actual control block */
gpibBlock gpibBlk; /* gpib parameter block */

Device Manager Interface Appendix C

NI-488.2 UM for Macintosh C-8 © National Instruments Corp.

gpibBlock* gpibBlkPtr; /* gpib parameter block pointer */
StatusBlk status; /* status block */

char* drvrName = (char*) "\p.GPIB Driver";

/**/
/* */
/* Function: Main */
/* */
/* Purpose: Execute the following gpib commands using low- */
/* level asynchronous device manager calls. */
/* */
/* Pseudo Code: */
/* */
/* brdID = ibfind("gpib0") */
/* ibsic(brdID) */
/* ibcmd(brdID,"A ",2L) */
/* ibrd(brdID,buffer,MAXBUF) */
/* */
/* while(!done) */
/* { */
/* Give Processing Time to System */
/* } */
/* return to system */
/* */
/**/

main ()
{
int osErr;
EventRecord myEvent;

char* cmd = "A "; /* TA1 - LA0 */
char* brdName = "gpib0"; /* bus name */

RememberA5();

/* Set up gpib parameter block pointer */

gpibBlkPtr = &gpibBlk;
cr_gpibBlkPtr = &cr_gpibBlk;

/* Set up pointer to gpib status block */

gpibBlkPtr->statusBlk = &status;
cr_gpibBlkPtr->statusBlk = &cr_status;

/* Set up pointer to gpib control block */

cp = &ctParam;
cr_cp = &cr_ctParam;

/* Setup pointer in the control block to the gpib parameter block */

Appendix C Device Manager Interface

© National Instruments Corp. C-9 NI-488.2 UM for Macintosh

cp->niParam = (Ptr)gpibBlkPtr;
cr_cp->niParam = (Ptr)cr_gpibBlkPtr;

/* Place a pointer to completion routine in the control block */

cp->ioCompletion = (ProcPtr)Completion_Routine;
cr_cp->ioCompletion = (ProcPtr)Completion_Routine;

/* Place a pointer to the driver name in the control block */

cp->ioNamePtr = (StringPtr)drvrName;
cr_cp->ioNamePtr = (StringPtr)drvrName;

/**/
/* */
/* Open Console */
/* */
/**/

printf("Reading Data - Terminate on END or %ld bytes.\n\n",TOTALBYTES);

/**/
/* */
/* Open the GPIB Driver to get the reference number */
/* */
/**/

osErr = PBOpen((ParmBlkPtr)cp,false);

if (osErr)
{
 printf("\nOpen error: %d\n", osErr);
 return;
}

/* copy driver reference number to the completion routine's control
block */

cr_cp->ioVRefNum = cp->ioVRefNum;
cr_cp->ioRefNum = cp->ioRefNum;

/****************************/
/* */
/* brdID = ibfind("gpib0") */
/* */
/****************************/

gpibBlkPtr->IOBufPtr= brdName; /* ibFIND gpib0 */
cp->csCode = ibFIND;
osErr = PBControl((ParmBlkPtr)cp, true);
brdID = gpibBlkPtr->id;

Device Manager Interface Appendix C

NI-488.2 UM for Macintosh C-10 © National Instruments Corp.

/****************************/
/* */
/* ibsic(gpib0) */
/* */
/****************************/

gpibBlkPtr->id = brdID;
cp->csCode = ibSIC;
osErr = PBControl((ParmBlkPtr)cp, true);

/****************************/
/* */
/* ibcmd(gpib0,"A ",2L) */
/* */
/****************************/

/* device at pad1 = tacs, gpib0 = lacs */

gpibBlkPtr->id = brdID;
gpibBlkPtr->IOBufPtr = cmd;
gpibBlkPtr->IOCount = 2L;
cp->csCode = ibCMD;
osErr = PBControl((ParmBlkPtr)cp,true);

/**/
/* */
/* Initialize count variable */
/* */
/**/

totalread = 0L;

/****************************/
/* */
/* ibrd(gpib0,buffer,MAXBUF)*/
/* */
/****************************/

gpibBlkPtr->id = brdID;
gpibBlkPtr->IOBufPtr = buffer;
gpibBlkPtr->IOCount = MAXBUF;
cp->csCode = ibRD;
osErr = PBControl((ParmBlkPtr)cp,true);

/**/
/* */
/* Wait for TOTALBYTES bytes to come in. The completion routine */
/* will call ibrd asynchronously until END is detected. */
/* */
/* Allow operating system to continue processing by calling OS */
/* procedures GetNextEvent() and SystemTask(). */
/* */
/**/

Appendix C Device Manager Interface

© National Instruments Corp. C-11 NI-488.2 UM for Macintosh

while(!Finished)
{
 SystemTask();
 GetNextEvent(everyEvent,&myEvent);
};

printf("\n");

printf("Total Count was %ld",totalread);

return;
}

/**/
/* */
/* Function: Completion_Routine */
/* */
/* Purpose: Execute ibrds of MAXBUF bytes until END is */
/* detected. */
/* */
/* */
/* Pseudo Code: */
/* */
/* while(!ibsta & END) */
/* { */
/* ibrd(brdID,buffer,MAXBUF); */
/* } */
/* */
/**/

void Completion_Routine()
{
int OsErr; /* error codes */
int myibsta; /* local ibsta */
int myiberr; /* local iberr */
long myibcnt; /* local ibcnt */
MyNI488CntrlParam* cp; /* pointer to incoming control
block */
gpibBlock* gpibBlkPtr; /* gpib parameter block */

/**/
/* */
/* Save registers d2-d7 and a2-a4 */
/* */
/**/

asm { movem.l d2-d7/a2-a4,-(a7) }

/**/
/* */
/* Set register a5 to point to my applications global data area */
/* */
/**/

Device Manager Interface Appendix C

NI-488.2 UM for Macintosh C-12 © National Instruments Corp.

SetUpA5(); /* Save the current A5 contents and then set register
 A5 to its proper value for the calling application */

/**/
/* */
/* Get pointer to control block for this call from register a0 */
/* */
/**/

asm { move.l a0,cp }

if(cp->csCode == ibRD)
{

/* pick up pointer to local status block */

gpibBlkPtr = (gpibBlockPtr)cp->niParam;

myibsta = gpibBlkPtr->statusBlk->ibsta;
myiberr = gpibBlkPtr->statusBlk->iberr;
myibcnt = gpibBlkPtr->statusBlk->ibcnt;

 totalread += myibcnt;

 /* If not END, read MAXBUF more bytes from the device */

if(!(myibsta & END) && totalread<TOTALBYTES)
{

 cr_cp->csCode = ibRD;
 cr_gpibBlkPtr->id = brdID;
 cr_gpibBlkPtr->IOBufPtr = buffer;
 cr_gpibBlkPtr->IOCount = MAXBUF;
 OsErr = PBControl((ParmBlkPtr)cr_cp, true);

}
else

 Finished = true; /* notify main() that ibrds are finished */

}

/**/
/* */
/* Restore A5 back to its old value */
/* */
/**/

RestoreA5(); /* Restore A5 back to its original value */

/**/
/* */
/* Restore registers d2-d7 and a2-a4 */
/* */
/**/

Appendix C Device Manager Interface

© National Instruments Corp. C-13 NI-488.2 UM for Macintosh

asm { movem.l (a7)+,d2-d7/a2-a4 } /* Restore saved registers */

return;
}

Example Application Explanation

Main Body

The main body of the program performs the following steps in this order.

1. Calls RememberA5() to save a copy of the A5 register into the void function
GetA5() .

2. Opens the GPIB driver and issues several function calls asynchronously to set up
gpib0 to be LACS and the device at pad 1 to be TACS.

3. Initializes control variables and total counts as it prepares to start reading data from
the device.

4. Issues an ibrd of MAXBUF bytes on gpib0 .

5. Waits, in its main loop, for the completion routine to set the state of the global
variable Finished to TRUE. During this interim period, it continuously calls
GetNextEvent() and SystemTask() to give the operating system sufficient
processing time.

6. When Finished becomes TRUE, prints out the total number of bytes read and
exits.

Completion Routine

The completion routine performs these steps in the following order.

1. Preserves registers D2 through D7 and A2 through A4.

2. Executes SetUpA5() to set the value of the A5 register to point to the global data
area of the application.

3. Picks up a pointer to the original call's control block from register A0. The NI-488.2
driver places this value into register A0 to enable the completion routine to access
status information on the recently completed function call.

4. Examines the control block of the calling function to determine whether the
completion routine was called as a result of an ibrd . If so, a pointer to the gpib
parameter block is extracted from the cp->niParam field of the control block.
The routine evaluates the status information to determine whether the END condition
has occurred. If END has not occurred and the total count is less than

Device Manager Interface Appendix C

NI-488.2 UM for Macintosh C-14 © National Instruments Corp.

TOTALBYTES , another ibrd call of MAXBUF bytes is issued to the device.
Remember that the new ibrd call must use a separate control block structure. If
END was detected, the global variable Finished is updated to inform the
application's wait loop that the I/O is complete.

5. Restores the original contents of the A5 register with the RestoreA5() macro.
Also restores registers D2 through D7 and A2 through A4 and returns control to the
Device Manager.

For more Device Manager examples, refer to Chapter 3, Device Manager Functions and
Routines , in the NI-488.2 Function Reference Manual for Macintosh.

© National Instruments Corp. D-1 NI-488.2 UM for Macintosh

Appendix D
Customer Communication

For your convenience, this appendix contains forms to help you gather the information
necessary to help us solve technical problems you might have as well as a form you can
use to comment on the product documentation. Filling out a copy of the Technical
Support Form before contacting National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In
the U.S. and Canada, applications engineers are available Monday through Friday from
8:00 a.m. to 6:00 p.m. (central time). In other countries, contact the nearest branch
office. You may fax questions to us at any time.

Corporate Headquarters
(512) 795-8248
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices Phone Number Fax Number
Australia (03) 879 9422 (03) 879 9179
Austria (0662) 435986 (0662) 437010-19
Belgium 02/757.00.20 02/757.03.11
Denmark 45 76 26 00 45 76 71 11
Finland (90) 527 2321 (90) 502 2930
France (1) 48 14 24 00 (1) 48 14 24 14
Germany 089/741 31 30 089/714 60 35
Italy 02/48301892 02/48301915
Japan (03) 3788-1921 (03) 3788-1923
Mexico 95 800 010 0793 95 800 010 0793
Netherlands 03480-33466 03480-30673
Norway 32-848400 32-848600
Singapore 2265886 2265887
Spain (91) 640 0085 (91) 640 0533
Sweden 08-730 49 70 08-730 43 70
Switzerland 056/20 51 51 056/20 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 0635 523545 0635 523154

Technical Support Form

Photocopy this form and update it each time you make changes to your software or
hardware, and use the completed copy of this form as a reference for your current
configuration. Completing this form accurately before contacting National Instruments
for technical support helps our applications engineers answer your questions more
efficiently.

If you are using any National Instruments hardware or software products related to this
problem, include the configuration forms from their user manuals. Use additional pages
if necessary.

Name

Company

Address

Fax () Phone ()

Computer brand

Model Processor

Operating system

Speed MHz RAM MB

Display adapter

Mouse yes no

Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product

Revision

Configuration

National Instruments software product

Version

Configuration

(continues)

The problem is

List any error messages

The following steps will reproduce the problem

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with
our products. This information helps us provide quality products to meet your needs.

Title: NI-488.2™ User Manual for Macintosh

Edition Date: January 1995

Part Number: 320897A-01

Please comment on the completeness, clarity, and organization of the manual.

(continues)

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications
National Instruments Corporation
6504 Bridge Point Parkway, MS 53-02
Austin, TX 78730-5039

Fax to: Technical Publications
National Instruments Corporation
MS 53-02
(512) 794-5678

© National Instruments Corp. G-1 NI-488.2 UM for Macintosh

Glossary

A

AC alternating current.

acceptor handshake Listeners use this GPIB interface function to receive data, and
all devices use it to receive commands. See source handshake
and handshake .

access board The GPIB board that controls and communicates with the
devices on the bus that are attached to it.

ANSI American National Standards Institute.

ASCII American Standard Code for Information Interchange.

automatic serial polling A feature of the NI-488.2 software in which serial polls
(autopolling) are executed automatically by the driver whenever a device

asserts the GPIB SRQ line.

B

board-level function A rudimentary function that performs a single operation.

boot See startup.

C

CFE Configuration Enable is the GPIB command which precedes
CFGn and is used to place devices into their configuration
mode.

Prefix Meaning Value

n-
µ-
m-
k-
M-

nano-
micro-
milli-
kilo-
mega-

10-9

10-6

10-3

103

106

Glossary

NI-488.2 UM for Macintosh G-2 © National Instruments Corp.

CFGn These GPIB commands (CFG1 through CFG15) follow CFE
and are used to configure all devices for the number of meters
of cable in the system so that HS488 transfers occur without
errors.

CIC See Controller-In-Charge.

configuration The process of altering the software parameters in the driver
that describe characteristics of the devices and boards.

Controller-In-Charge The device that manages the GPIB by sending interface
(CIC) messages to other devices.

CPU Central processing unit.

D

DAV (Data Valid) One of the three GPIB handshake lines. See handshake .

DCL Device Clear is the GPIB command used to reset the device or
internal functions of all devices. See SDC .

dec Decimal.

Device Clear See DCL.

device-level function A function that combines several rudimentary board
operations into one function so that the user does not have to
be concerned with bus management or other GPIB protocol
matters.

DIO1 through DIO8 The GPIB lines that are used to transmit command or data
bytes from one device to another.

DMA High-speed data transfer between the GPIB
(direct memory access) board and memory that is not handled directly by the CPU.

Not available on some systems. See programmed I/O.

driver Device driver software installed within the operating system.

E

END or END message A message that signals the end of a data string. END is sent
by asserting the GPIB End or Identify (EOI) line with the last
data byte.

Glossary

© National Instruments Corp. G-3 NI-488.2 UM for Macintosh

EOI (End or Identify) A GPIB line that is used to signal either the last byte of a data
message (END) or the parallel poll Identify (IDY) message.

EOS End-of-string.

EOS byte A 7- or 8-bit end-of-string character that is sent as the last byte
of a data message.

EOT End of transmission.

ESB The Event Status bit is part of the IEEE 488.2-defined status
byte which is received from a device responding to a serial
poll.

F

FIFO first-in-first-out.

G

GET Group Execute Trigger is the GPIB command used to trigger a
device or internal function of an addressed Listener.

Go To Local See GTL.

GPIB General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE
Standard 488.1-1987 and ANSI/IEEE Standard 488.2-1987.

GPIB address The address of a device on the GPIB, composed of a primary
address (MLA and MTA) and an optional secondary address
(MSA). The GPIB board has both a GPIB address and an I/O
address.

GPIB board Refers to the National Instruments family of GPIB interface
boards.

Group Executed Trigger See GET .

GTL Go To Local is the GPIB command used to place an addressed
Listener in local (front panel) control mode.

Glossary

NI-488.2 UM for Macintosh G-4 © National Instruments Corp.

H

handshake The mechanism used to transfer bytes from the Source
Handshake function of one device to the Acceptor Handshake
function of another device. The three GPIB lines DAV,
NRFD, and NDAC are used in an interlocked fashion to signal
the phases of the transfer, so that bytes can be sent
asynchronously (for example, without a clock) at the speed of
the slowest device.

For more information about handshaking, refer to the
ANSI/IEEE Standard 488.1-1987.

hex Hexadecimal; a number represented in base 16, for example
decimal 16 = hex 10.

high-level function See device-level function.

Hz Hertz.

I

ibcnt After each NI-488.2 I/O function, this global variable contains
the actual number of bytes transmitted.

iberr A global variable that contains the specific error code
associated with a function call that failed.

IBIC 488.2 IBIC 488.2 , the Interface Bus Interactive Control utility, is
used to communicate with GPIB devices, troubleshoot
problems, and develop your application.

ibsta At the end of each function call, this global variable (status
word) contains status information.

IEEE Institute of Electrical and Electronic Engineers.

interface message A broadcast message sent from the Controller to all devices
and used to manage the GPIB.

I/O (Input/Output) In the context of this manual, the transmission of commands
or messages between the computer via the GPIB board and
other devices on the GPIB.

Glossary

© National Instruments Corp. G-5 NI-488.2 UM for Macintosh

I/O address The address of the GPIB board from the point of view of the
CPU, as opposed to the GPIB address of the GPIB board.
Also called port address or board address.

ist An Individual Status bit of the status byte used in the Parallel
Poll Configure function.

K

KB Kilobytes of memory.

L

LAD (Listen Address) See MLA .

language interface Code that enables an application program that uses NI-488
functions or NI-488.2 routines to access the driver.

listen address See MLA .

Listener A GPIB device that receives data messages from a Talker.

low-level function See board-level function.

M

m Meters.

MAV The Message Available bit is part of the IEEE 488.2-defined
status byte which is received from a device responding to a
serial poll.

MB Megabytes of memory.

memory-resident Resident in RAM.

MLA A GPIB command used to address a device to be
(My Listen Address) a Listener. It can be any one of the 31 primary addresses.

Glossary

NI-488.2 UM for Macintosh G-6 © National Instruments Corp.

MSA My Secondary Address is the GPIB command used to address
(My Secondary Address) a device to be a Listener or a Talker when extended (two byte)

addressing is used. The complete address is a MLA or MTA
address followed by an MSA address. There are 31 secondary
addresses for a total of 961 distinct listen or talk addresses for
devices.

MTA (My Talk Address) A GPIB command used to address a device to be a Talker. It
can be any one of the 31 primary addresses.

N

NDAC One of the three GPIB handshake lines. See
(Not Data Accepted) handshake .

NI-488 Config The NI-488.2 driver configuration control panel utility.

NRFD One of the three GPIB handshake lines. See
(Not Ready For Data) handshake .

P

parallel poll The process of polling all configured devices at once and
reading a composite poll response. See serial poll .

PIO See programmed I/O.

PPC Parallel Poll Configure is the GPIB command
(Parallel Poll Configure) used to configure an addressed Listener to participate in polls.

PPD Parallel Poll Disable is the GPIB command used
(Parallel Poll Disable) to disable a configured device from participating in polls.

There are 16 PPD commands.

PPE Parallel Poll Enable is the GPIB command used
(Parallel Poll Enable) to enable a configured device to participate in polls and to

assign a DIO response line. There are 16 PPE commands.

PPU Parallel Poll Unconfigure is the GPIB command
(Parallel Poll used to disable any device from participating in
Unconfigure) polls.

programmed I/O Low-speed data transfer between the GPIB board and memory
in which the CPU moves each data byte according to program
instructions. See DMA .

Glossary

© National Instruments Corp. G-7 NI-488.2 UM for Macintosh

R

RAM Random-access memory.

RQS Request Service.

S

SC See System Controller.

SDC Selected Device Clear is the GPIB command used to reset
internal or device functions of an addressed Listener. See
DCL and IFC.

serial poll The process of polling and reading the status byte of one
device at a time. See parallel poll .

Service Request See SRQ.

source handshake The GPIB interface function that transmits data and
commands. Talkers use this function to send data, and the
Controller uses it to send commands. See acceptor handshake
and handshake .

SPD Serial Poll Disable is the GPIB command used to
(Serial Poll Disable) cancel an SPE command.

SPE Serial Poll Enable is the GPIB command used to
(Serial Poll Enable) enable a specific device to be polled. That device must also be

addressed to talk. See SPD.

SRQ (Service Request) The GPIB line that a device asserts to notify the CIC that the
device needs servicing.

startup To load the operating system programs from floppy or hard
disk into memory and to begin executing the code. A hard
boot is when power is applied to the computer.

status byte The IEEE 488.2-defined data byte sent by a device when it is
serially polled.

status word See ibsta.

System Controller The single designated Controller that can assert control
(become CIC of the GPIB) by sending the Interface Clear
(IFC) message. Other devices can become CIC only by
having control passed to them.

Glossary

NI-488.2 UM for Macintosh G-8 © National Instruments Corp.

T

TAD (Talk Address) See MTA .

Talker A GPIB device that sends data messages to Listeners.

TCT Take Control is the GPIB command used to pass control of the
bus from the current Controller to an addressed Talker.

timeout A feature of the NI-488.2 driver that prevents I/O functions
from hanging indefinitely when there is a problem on the
GPIB.

TLC An integrated circuit that implements most of the GPIB
Talker, Listener, and Controller functions in hardware.

TTL Transistor-transistor logic.

U

ud (unit descriptor) A variable name and first argument of each function call that
contains the unit descriptor of the GPIB interface board or
other GPIB device that is the object of the function.

UNL Unlisten is the GPIB command used to unaddress any active
Listeners.

UNT Untalk is the GPIB command used to unaddress an active
Talker.

NI-488.2 UM for Macintosh I-1 © National Instruments Corp.

Index

Numbers/Symbols

! Repeat Previous Function (IBIC 488.2), 4-15
$ Execute Indirect File function (IBIC 488.2), 4-16
+ Turn Display On function (IBIC 488.2), 4-15
- Turn Display Off function (IBIC 488.2), 4-15

A

address syntax, IBIC 488.2, 4-5
addressing, GPIB

address bits (illustration), 1-2
configuring in NI-488 Config utility

Primary Address option, 6-8
Repeat Addressing option, 6-11
Secondary Address option, 6-8
Unaddressing option, 6-10

overview, 1-2
repeat addressing, 3-3

AllSpoll routine, 5-7, 5-9
ANSI/IEEE Standard 488.1-1987, 1-1
application development . See debugging applications; programming.
Assert REN When System (Controller) option, NI-488 Config utility, 6-10
asynchronous low-level calls, Device Manager functions

example application, C-5 to C-14
how to use, C-2
limitations, C-2

ATN (attention) line, 1-3
ATN status word condition, A-3
automatic serial polling. See serial polling.
auxiliary functions, IBIC 488.2

! (Repeat Previous Function), 4-15
$ (Execute Indirect File), 4-16
+ (Turn Display On), 4-15
- (Turn Display Off), 4-15
Buffer (Set Buffer Display Mode), 4-17
Help, 4-15
list of functions (table), 4-14
n* (Repeat Function n Times), 4-16
PRINT (Display ASCII String), 4-16

Index

© National Instruments Corp. I-2 NI-488.2 UM for Macintosh

B

BASIC. See QuickBASIC.
Buffer (Set Buffer Display Mode) function, IBIC 488.2, 4-17
bus/device frame, NI-488 Config utility

bus only options, 6-9 to 6-11
bus or device options, 6-8 to 6-9
device only options, 6-11 to 6-12
options (table), 6-7

Bus Timing option, NI-488 Config utility, 6-9 to 6-10
byte count, IBIC 488.2, 4-9

C

C language
compiling, linking, and running applications, 2-17
NI-488.2 software language files, 1-7

CIC protocol, for making GPIB board Controller-in-Charge, 5-3 to 5-4
CIC status word condition, A-3
CMPL status word condition, A-3
communication errors

repeat addressing, 3-3
termination method, 3-4

compiling, linking, and running applications
C applications, 2-17
QuickBASIC applications, 2-17 to 2-18

completion routines, Device Manager functions
example application, C-13 to C-14
how to use, C-2 to C-3

configuration . See GPIB operation; NI-488 Config utility.
configuration errors, debugging, 3-2
Configure Enable (CFE) message, 5-2
Configure (CFGn) message, 5-2
control block structures, Device Manager functions, C-3
control calls, Device Manager functions, C-2
control items, NI-488 Config utility, 6-4
Controllers

CIC protocol for making GPIB board Controller-in-Charge, 5-3 to 5-4
Controller-In-Charge and System Controller, 1-1
device-level calls and bus management, 5-3 to 5-4
GPIB operation, 1-1
monitoring by Talker/Listener applications, 5-4
System Controller option, NI-488 Config utility, 6-10

count, IBIC 488.2, 4-9
count variables (ibcnt and ibcntl), 2-5
customer communication, xvi, D-1

Index

NI-488.2 UM for Macintosh I-3 © National Instruments Corp.

D

data lines, 1-2
data transfers

high-speed (HS488), 5-2 to 5-3
enabling, 5-2 to 5-3
system configuration effects, 5-3

terminating, 5-1 to 5-2
DAV (data valid) line, 1-3
DCAS status word condition

description, A-4
waiting for messages from Controller, 5-4

debugging applications. See also IBIC 488.2.
common questions, 3-4 to 3-5
communication errors

repeat addressing, 3-3
termination method, 3-4

configuration errors, 3-2 to 3-3
global status variables, 3-1
GPIB error codes, 3-1 to 3-2
IBIC 488.2, 3-1
NI-488.2 Test, 3-1
timing errors, 3-3

default configuration for NI-488.2 software, 6-3
device frame, NI-488 Config utility. See bus/device frame, NI-488 Config utility.
device-level calls and bus management, 5-3 to 5-4
Device Manager files, NI-488.2 software, 1-8
Device Manager interface

asynchronous low-level Device Manager calls, C-2
calling ibrda, ibwrta, and ibcmda asynchronously, C-3 to C-4
completion routines, C-2 to C-3
control block structures, C-3
example application, C-5 to C-14

completion routine explanation, C-13 to C-14
main body explanation, C-13

making control calls, C-2
opening GPIB driver, C-1
overview, C-1
parameter block structures and examples, C-4 to C-5
printing considerations, C-3
when to use, 2-3, C-1

DMA option, NI-488 Config utility, 6-10
documentation

conventions used, xv
organization of, xiv
related documentation, xv-xvi

Index

© National Instruments Corp. I-4 NI-488.2 UM for Macintosh

driver, GPIB
driver and driver utilities, NI-488.2, 1-6 to 1-7
opening before using Device Manager functions, C-1

DTAS status word condition
description, A-4
waiting for messages from Controller, 5-4

E

EABO error code, B-4 to B-5
EADR error code, B-3
EARG error code, B-4
EBUS error code, B-6 to B-7
ECAP error code, B-6
ECIC error code, B-2
EDMA error code, B-5
EDVR error code, B-1 to B-2
EFSO error code, B-6
ELCK error code, B-8
END status word condition, A-2
ENEB error code, B-5
ENOL error code, B-3
EOI (end or identify) line

definition (table), 1-3
termination of data transfers, 5-1

EOIP error code, B-5 to B-6
EOS, configuring

ibeos function, 5-1
NI-488 Config utility

EOS Byte option, 6-9
EOS Modes option, 6-9

EOS comparison method, 5-1
EOS read method, 5-1
EOS write method, 5-1
ERR status word condition, A-2
error codes, IBIC 488.2 operation, 4-9
error codes and solutions

debugging applications, 3-1 to 3-2
EABO, B-4 to B-5
EADR, B-3
EARG, B-4
EBUS, B-6 to B-7
ECAP, B-6
ECIC, B-2
EDMA, B-5
EDVR, B-1 to B-2
EFSO, B-6

Index

NI-488.2 UM for Macintosh I-5 © National Instruments Corp.

ELCK, B-8
ENEB, B-5
ENOL, B-3
EOIP, B-5 to B-6
ESAC, B-4
ESRQ, B-7 to B-8
ESTB, B-7
ETAB, B-8
list of error codes (table), 3-2, B-1

error variable (iberr), 2-5
errors, debugging

common questions, 3-4 to 3-5
communication errors

repeat addressing, 3-3
termination method, 3-4

configuration errors, 3-2
GPIB error codes, 3-1 to 3-2
timing errors, 3-3

ESAC error code, B-4
ESRQ error code, B-7 to B-8
ESTB error code, B-7
ETAB error code, B-8
Event Status bit (ESB), 5-5
Execute Indirect File function ($), IBIC 488.2, 4-16

F

FindRQS routine, 5-7, 5-8
functions. See Device Manager interface; IBIC 488.2; NI-488 functions.

G

General Purpose Interface Bus (GPIB). See GPIB operation.
global frame, NI-488 Config utility, 6-6 to 6-7
global variables

count variables (ibcnt and ibcntl), 2-5
debugging applications, 3-1
error variable (iberr), 2-5
status word (ibsta), 2-3 to 2-4, A-1 to A-4

GPIB addressing. See addressing, GPIB.
GPIB configuration utility . See NI-488 Config utility.
GPIB error codes . See error codes and solutions.

Index

© National Instruments Corp. I-6 NI-488.2 UM for Macintosh

GPIB operation
addressing, 1-2
configuration

controlling more than one board, 1-5
linear and star configuration (illustration), 1-4
requirements, 1-5 to 1-6

Controller-In-Charge and System Controller, 1-1
interface management lines

ATN (attention), 1-3
EOI (end or identify), 1-3
IFC (interface clear), 1-3
REN (remote enable), 1-3
SRQ (service request), 1-3

overview, 1-1
sending messages, 1-2 to 1-3
signals and lines

data lines, 1-2
DAV (data valid), 1-3
handshake lines, 1-3
NDAC (not data accepted), 1-3
NRFD (not ready for data), 1-3

Talkers, Listeners, and Controllers, 1-1
GPIB programming techniques

device-level calls and bus management, 5-3 to 5-4
high-speed data transfers, 5-2 to 5-3

enabling HS488, 5-2 to 5-3
system configuration effects, 5-3

parallel polling, 5-9 to 5-12
implementing, 5-9 to 5-12
using NI-488 functions, 5-10 to 5-11
using NI-488.2 routines, 5-11 to 5-12

serial polling, 5-5 to 5-9
automatic serial polling, 5-5 to 5-7

autopolling and interrupts, 5-6
C "ON SRQ" capability, 5-6 to 5-7
stuck SRQ state, 5-6

service requests
from IEEE 488 devices, 5-5
from IEEE 488.2 devices, 5-5

SRQ and serial polling
with NI-488 device functions, 5-7
with NI-488.2 routines, 5-7 to 5-9

Talker/Listener applications, 5-4
requesting service, 5-4
waiting for messages from Controller, 5-4

termination of data transfers, 5-1 to 5-2
waiting for GPIB conditions, 5-3

Index

NI-488.2 UM for Macintosh I-7 © National Instruments Corp.

H

handshake lines, 1-3
help frame, NI-488 Config utility, 6-5
high-speed data transfers (HS488), 5-2 to 5-3

enabling HS488, 5-2 to 5-3
system configuration effects, 5-3

HS488 . See high-speed data transfers (HS488).
HSS488 configuration message, 5-2

I

ibask function, 5-3
ibcmd function, 5-2
ibcmda function, calling asynchronously, C-3 to C-4
ibcnt and ibcntl count variables, 2-5
ibconfig function

configuring GPIB board as CIC, 5-3
determining assertion of EOI line, 5-1 to 5-2
enabling autopolling, 5-5
enabling high-speed data transfers, 5-2

ibdev function
conducting parallel polls, 5-10
IBIC 488.2, 4-10 to 4-11

ibeos function, 5-1
ibeot function, 5-1
iberr (error variable), 2-5
IBIC 488.2

auxiliary functions
! (Repeat Previous Function), 4-15
$ (Execute Indirect File), 4-16
+ (Turn Display On), 4-15
- (Turn Display Off), 4-15
Buffer (Set Buffer Display Mode), 4-17
Help, 4-15
list of functions (table), 4-14
n* (Repeat Function n Times), 4-16
PRINT (Display ASCII String), 4-16
Set (Select Device or Board), 4-14

byte count, 4-9
debugging applications, 3-1
error information, 4-9
NI-488 functions commonly used with

ibdev, 4-10 to 4-11
ibfind, 4-10
ibrd, 4-12
ibwrt, 4-12

Index

© National Instruments Corp. I-8 NI-488.2 UM for Macintosh

NI-488.2 routines commonly used with
examples, 4-1 to 4-4
Receive, 4-13
Send and SendList, 4-13
Set, 4-12

overview, 2-5, 4-1
status word (ibsta), 4-9
syntax

address syntax, 4-5
NI-488 functions, 4-5 to 4-7
NI-488.2 routines, 4-8
number syntax, 4-4
string syntax, 4-4 to 4-5

ibppc function
conducting parallel polls, 5-10
unconfiguring device for parallel polling, 5-11

ibrd function, 4-12
ibrda function, calling asynchronously, C-3 to C-4
ibrpp function, 5-11
ibrsp function, 5-6, 5-7
ibrsrv function, 5-4
ibsta. See status word (ibsta).
ibwait function

conducting serial polls, 5-7
Talker/Listener applications, 5-4
terminating stuck SRQ state, 5-6
waiting for GPIB conditions, 5-3

ibwrt function, 4-12
ibwrta function, calling asynchronously, C-3 to C-4
IFC (interface clear) line, 1-3
Interface Bus Interactive Control utility (IBIC 488.2). See IBIC 488.2.
interface management lines

ATN (attention), 1-3
EOI (end or identify), 1-3
IFC (interface clear), 1-3
REN (remote enable), 1-3
SRQ (service request), 1-3

interrupts and autopolling, 5-6

L

LACS status word condition
description, A-4
waiting for message from Controller, 5-4

lines. See signals and lines.

Index

NI-488.2 UM for Macintosh I-9 © National Instruments Corp.

Listeners
definition, 1-1
Talker/Listener applications, 5-4

LOK status word condition, A-3

M

Message Available (MAV) bit, 5-5
messages, sending across GPIB, 1-2 to 1-3

N

n* Repeat Function n Times function (IBIC 488.2), 4-15
NDAC (not data accepted) line, 1-3
NI-488 applications, programming. See programming.
NI-488 Config utility

Assert REN When System (Controller) option, 6-10
bus/device frame, 6-7 to 6-11

bus-only options, 6-9
bus or device options, 6-8 to 6-9
device-only options, 6-11
options (table), 6-7

Bus/Device menu, 6-2
Bus Timing option, 6-9 to 6-10
control items, 6-4
default configuration, 6-3
DMA option, 6-10
EOS Byte option, 6-9
EOS modes, 6-9
exiting, 6-11 to 6-12
global frame, 6-6 to 6-7
help frame, 6-5
Interface Type menu, 6-2
opening, 6-1 to 6-2
opening screen (illustration), 6-2
overview, 6-1
Primary Address pop-up menu, 6-8
Rename Device option, 6-11
Repeat Addressing option, 6-11
Secondary Address pop-up menu, 6-8
System Controller option, 6-10
Timeout pop-up menu, 6-8
TNT High Speed option, 6-10
Unaddressing option, 6-10
Use Bus option, 6-11

Index

© National Instruments Corp. I-10 NI-488.2 UM for Macintosh

NI-488 functions
board functions, 2-2
device functions, 2-2
one device per board concept, 2-1
parallel polling, 5-10 to 5-11
serial polling, 5-7
using in IBIC 488.2

ibdev, 4-10 to 4-11
ibfind, 4-10
ibrd, 4-12
ibwrt, 4-12
Set, 4-12
syntax (table), 4-6 to 4-7

NI-488.2 applications, programming. See programming.
NI-488.2 routines

capabilities, 2-2
parallel polling, 5-11 to 5-12
serial polling, 5-7 to 5-9
serial polling examples

AllSpoll, 5-9
FindRQS, 5-8

using in IBIC 488.2
Receive, 4-13
Send, 4-13
SendList, 4-13
Set, 4-12
syntax (table), 4-8

NI-488.2 software
C language files, 1-7
default configuration, 6-3
Device Manager files, 1-8
driver and driver utilities, 1-6 to 1-7
how NI-488.2 works with your system, 1-8
QuickBASIC language files, 1-7

NI-488.2 Test utility, 3-1
NRFD (not ready for data) line, 1-3
number syntax, IBIC 488.2, 4-4

O

operation of GPIB. See GPIB operation.

Index

NI-488.2 UM for Macintosh I-11 © National Instruments Corp.

P

parallel polling, 5-9 to 5-12
implementing, 5-9 to 5-12
using NI-488 functions, 5-10 to 5-11
using NI-488.2 routines, 5-11 to 5-12

parameter block structures, Device Manager functions, C-4 to C-5
PPoll routine, 5-11
PPollConfig routine, 5-11
PPollUnconfig routine, 5-12
primary GPIB address

definition, 1-2
setting in NI-488 Config utility, 6-8

PRINT (Display ASCII String function, IBIC), 4-16
printing considerations, Device Manager functions, C-3
programming. See also debugging applications; GPIB programming techniques.

checking status with global variables
count variables (ibcnt and ibcntl), 2-5
error variable (iberr), 2-5
status word (ibsta), 2-3 to 2-4

choosing programming method
Device Manager, 2-3
NI-488.2 language interface, 2-1 to 2-2

compiling, linking, and running
C applications, 2-17
QuickBASIC applications, 2-17 to 2-18

examples
Device Manager interface, C-5 to C-14

completion routine explanation, C-13 to C-14
main body explanation, C-13

NI-488.2 routines in IBIC 488.2, 4-1 to 4-4
IBIC 488.2 for communicating with devices, 2-5
NI-488 applications

clearing devices, 2-8
configuring devices, 2-8 to 2-9
items to include, 2-6
NI-488 program shell (illustration), 2-7
opening devices, 2-8
placing device offline, 2-10
processing data, 2-10
reading measurements, 2-10
triggering devices, 2-9
waiting for measurements, 2-9 to 2-10

NI-488.2 applications
configuring instruments, 2-15
finding all Listeners, 2-13
identifying instruments, 2-13 to 2-14
initialization, 2-13

Index

© National Instruments Corp. I-12 NI-488.2 UM for Macintosh

initializing instruments, 2-14
items to include, 2-11
NI-488.2 program shell (illustration), 2-12
placing board offline, 2-16
processing data, 2-16
reading measurements, 2-16
triggering instruments, 2-15
waiting for measurements, 2-15 to 2-16

Q

QuickBASIC
compiling, linking, and running applications, 2-17 to 2-18
NI-488.2 software language files, 1-7

R

ReadStatusByte routine, 5-7
Receive routine, IBIC 488.2, 4-13
REM status word condition, A-3
REN (remote enable) line, 1-3
Rename Device option, NI-488 Config utility, 6-11
repeat addressing

enabling in NI-488 Config utility, 6-11
required before GPIB activity, 3-3

Repeat Function n Times (n*), IBIC 488.2, 4-16
Repeat Previous Function (!), IBIC 488.2, 4-15
RQS status word condition, A-2 to A-3

S

secondary GPIB address
definition, 1-2
setting in NI-488 Config utility, 6-8

Send routine, 4-13
SendCmds function, 5-2
sending messages across GPIB, 1-2 to 1-3
SendList routine, 4-13
serial polling, 5-5 to 5-9

automatic serial polling, 5-5 to 5-7
autopolling and interrupts, 5-6
C "ON SRQ" capability, 5-6 to 5-7
stuck SRQ state, 5-6

Index

NI-488.2 UM for Macintosh I-13 © National Instruments Corp.

service requests
from IEEE 488 devices, 5-5
from IEEE 488.2 devices, 5-5
Talker/Listener applications, 5-4

SRQ and serial polling
with NI-488 device functions, 5-7
with NI-488.2 routines, 5-7 to 5-9

service requests
serial polling

IEEE 488 devices, 5-5
IEEE 488.2 devices, 5-5

stuck SRQ state, 5-6
Talker/Listener applications, 5-4

Set function (Select Device or Board), IBIC 488.2, 4-14
Set routine, IBIC 488.2, 4-12
signals and lines

ATN (attention), 1-3
data lines, 1-2
DAV (data valid), 1-3
EOI (end or identify), 1-3
handshake lines (table), 1-3
IFC (interface clear), 1-3
interface management lines (table), 1-3
NDAC (not data accepted), 1-3
NRFD (not ready for data), 1-3
REN (remote enable), 1-3
SRQ (service request), 1-3

SRQ (service request) line
definition, 1-3
serial polling

automatic serial polling, 5-5 to 5-6
C "ON SRQ" capability, 5-6 to 5-7
stuck SRQ state, 5-6
using NI-488 device functions, 5-7
using NI-488.2 routines, 5-7 to 5-9

SRQI status word condition, A-2
status word (ibsta)

ATN, A-3
CIC, A-3
CMPL, A-3
DCAS, A-4
DTAS, A-4
END, A-2
ERR, A-2
IBIC 488.2 operation, 4-9
LACS, 5-4, A-4
list of status word bits (table), 2-4, A-1
LOK, A-3
REM, A-3

Index

© National Instruments Corp. I-14 NI-488.2 UM for Macintosh

RQS, A-2 to A-3
SRQI, A-2
TACS, 5-4, A-4
testing for ibsta conditions, 2-3 to 2-4
TIMO, A-2

string syntax, IBIC 488.2, 4-4 to 4-5
stuck SRQ state, 5-6
syntax, IBIC 488.2. See IBIC 488.2.
System Controller

configuring in NI-488 Config utility, 6-10
GPIB operation, 1-1

T

TACS status word condition
definition, A-4
waiting for message from Controller, 5-4

Talker/Listener applications
definition, 5-4
requesting service, 5-4
waiting for messages from Controller, 5-4

Talkers, 1-1
technical support, D-1
termination of data transfers

debugging applications, 3-4
GPIB programming techniques, 5-1 to 5-2

TestSRQ routine, 5-7
timeout value, setting in NI-488 Config utility, 6-8
timing errors, 3-3
TIMO status word condition, A-2
TNT High Speed option, NI-488 Config utility, 6-10
TNT4882C hardware, 5-2
Turn Display Off function (-), IBIC 488.2, 4-15
Turn Display On function (+), IBIC 488.2, 4-15

U

Unaddressing option, NI-488 Config utility, 6-10
Use Bus option, NI-488 Config utility, 6-11

W

WaitSRQ routine, 5-7
writing applications. See programming.

	NI-488.2 ™User Manual for Macintosh
	Limited Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	How to Use This Manual Set
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	GPIB Overview
	Talkers, Listeners, and Controllers
	Controller-In-Charge and System Controller
	GPIB Addressing
	Sending Messages Across the GPIB
	Data Lines
	Handshake Lines
	Interface Management Lines
	Setting Up and Configuring Your System
	Controlling More Than One Board
	Configuration Requirements
	NI-488.2 Software Components
	NI-488.2 Driver and Driver Utilities
	C Language Files
	QuickBASIC Language Files
	Device Manager Files
	How the NI-488.2 Software Works with Your System

	Chapter 2 Developing Your Application
	Choosing a Programming Method
	Using the NI-488.2 Language Interface
	Using NI-488 Functions: One Device for Each Board
	NI-488 Device Functions
	NI-488 Board Functions
	Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices
	Using the Device Manager
	Checking Status with Global Variables
	Status Word – ibsta
	Error Variable – iberr
	Count Variables – ibcnt and ibcntl
	Using IBIC 488.2 to Communicate with Devices
	Writing Your NI-488 Application
	Items to Include
	NI-488 Program Shell
	General Program Steps and Examples
	Step 1. Open a Device
	Step 2. Clear the Device
	Step 3. Configure the Device
	Step 4. Trigger the Device
	Step 5. Wait for the Measurement
	Step 6. Read the Measurement
	Step 7. Process the Data
	Step 8. Place the Device Offline
	Writing Your NI-488.2 Application
	Items to Include
	NI-488.2 Program Shell
	General Program Steps and Examples
	Step 1. Initialization
	Step 2. Find All Listeners
	Step 3. Identify the Instrument
	Step 4. Initialize the Instrument
	Step 5. Configure the Instrument
	Step 6. Trigger the Instrument
	Step 7. Wait for the Measurement
	Step 8. Read the Measurement
	Step 9. Process the Data
	Step 10. Place the Board Offline
	Compiling, Linking, and Running
	C Applications
	QuickBASIC Applications

	Chapter 3 Debugging Your Application
	Running NI-488.2 Test
	Debugging with the Global Status Variables
	Debugging with IBIC 488.2
	GPIB Error Codes
	Configuration Errors
	Timing Errors
	Communication Errors
	Repeat Addressing
	Termination Method
	Common Questions

	Chapter 4 Interface Bus Interactive Control Utility
	Overview
	Example Using NI-488 Functions
	IBIC 488.2 Syntax
	Number Syntax
	String Syntax
	Address Syntax
	IBIC 488.2 Syntax for NI-488 Functions
	IBIC 488.2 Syntax for NI-488.2 Routines
	Status Word
	Error Information
	Count
	Common NI-488 Functions
	ibfind
	ibdev
	ibwrt
	ibrd
	Common NI-488.2 Routines in IBIC 488.2
	Set
	Send and SendList
	Receive
	Auxiliary Functions
	Set (Select Device or Board)
	Help (Display Help Information)
	! (Repeat Previous Function)
	- (Turn Display Off) and + (Turn Display On)
	n* (Repeat Function n Times)
	$ (Execute Indirect File)
	Print (Display the ASCII String)
	Buffer (Set Buffer Display Mode)

	Chapter 5 GPIB Programming Techniques
	Termination of Data Transfers
	High-Speed Data Transfers (HS488)
	Enabling HS488
	System Configuration Effects on HS488
	Waiting for GPIB Conditions
	Device-Level Calls and Bus Management
	Talker/Listener Applications
	Waiting for Messages from the Controller
	Requesting Service
	Serial Polling
	Service Requests from IEEE 488 Devices
	Service Requests from IEEE 488.2 Devices
	Automatic Serial Polling
	Stuck SRQ State
	Autopolling and Interrupts
	C “ON SRQ” Capability
	SRQ and Serial Polling with NI-488 Device Functions
	SRQ and Serial Polling with NI-488.2 Routines
	Example 1: Using FindRQS
	Example 2: Using AllSpoll
	Parallel Polling
	Implementing a Parallel Poll
	Parallel Polling with NI-488 Functions
	Parallel Polling with NI-488.2 Routines

	Chapter 6 GPIB Configuration Utility
	Overview
	Running the Configuration Utility
	Opening the Configuration Utility
	Default Configuration
	Control Items
	Help Frame
	Global Frame
	Bus/Device Frame
	Options for Buses or Devices
	Primary Address
	Secondary Address
	Timeout
	EOS Modes
	EOS Byte
	Options for Buses Only
	Bus Timing
	TNT High Speed
	DMA
	System Controller
	Assert REN when System (Controller)
	Unaddressing
	Repeat Addressing
	Options for Devices Only
	Rename Device
	Use Bus
	Exiting the Configuration Utility

	Appendix A Status Word Conditions
	Appendix B Error Codes and Solutions
	Appendix C Device Manager Interface
	Appendix D Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. GPIB Address Bits
	Figure 1-2. Linear and Star System Configuration
	Figure 1-3. Example of Multiboard System Setup
	Figure 1-4. How the NI-488.2 Software Works with Your System
	Figure 2-1. General Program Shell Using NI-488 Device Functions
	Figure 2-2. General Program Shell Using NI-488.2 Routines
	Figure 6-1. Opening Screen of NI-488 Config
	Figure 6-2. Device Default Settings in NI-488 Config
	Figure 6-3. Help Frame in NI-488 Config
	Figure 6-4. Manual Bus Association in NI-488 Config

	Tables
	Table 1-1. GPIB Handshake Lines
	Table 1-2. GPIB Interface Management Lines
	Table 2-1. Status Word (ibsta) Layout
	Table 3-1. GPIB Error Codes
	Table 4-1. Syntax for Device-Level NI-488 Functions in IBIC 488.2
	Table 4-2. Syntax for Board-Level NI-488 Functions in IBIC 488.2
	Table 4-3. Syntax for NI-488.2 Routines in IBIC 488.2
	Table 4-4. Auxiliary Functions in IBIC 488.2
	Table 6-1. Bus/Device Options in NI-488 Config

